This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement

Journal Article
2015-32-0711
ISSN: 1946-3936, e-ISSN: 1946-3944
Published November 17, 2015 by Society of Automotive Engineers of Japan in Japan
Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement
Sector:
Citation: Ratnak, S., Kusaka, J., Daisho, Y., Yoshimura, K. et al., "Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement," SAE Int. J. Engines 9(1):379-396, 2016.
Language: English

References

  1. Alger , T. , Gingrich , J. , Mangold , B. , and Roberts , C. A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines SAE Int. J. Engines 4 1 677 692 2011 10.4271/2011-01-0661
  2. DeFilippo , A. , Saxena , S. , Rapp , V. , Dibble , R. et al. Extending the Lean Stability Limits of Gasoline Using a Microwave-Assisted Spark Plug SAE Technical Paper 2011-01-0663 2011 10.4271/2011-01-0663
  3. Noma , K. , Iwamoto , Y. , Murakami , N. , Iida , K. et al. Optimized Gasoline Direct Injection Engine for the European Market SAE Technical Paper 980150 1998 10.4271/980150
  4. George , A. L. , Elloitt , O. S. , Aristotelis , B. , Jason , B. M. et al. Thermodynamic sweet spot for high efficiency, dilute, boosted gasoline engines International Journal of Engine Research 14 3 260 278 2012 10.1177/1468087412455372
  5. Heywood , J. B. Internal Combustion Engine Fundamentals 0-07-100499-8
  6. Carton , J. A. An assessment of the thermodynamic associated with high efficiency engines ASME 2010 ICE Fall Technical Conference ASME 2010
  7. George , A. L. , Elloitt , O. S. , Aristotelis , B. , Jason , B. M. et al. Thermodynamic sweet spot for high efficiency, dilute, boosted gasoline engines International Journal of Engine Research 14 3 260 278 2012 10.1177/1468087412455372
  8. Kikusato , A. , Jin , K. , and Daisho , Y. A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall --- SAE Int. J. Engines 7 1 96 105 2014 10.4271/2014-01-1073
  9. Kikusato , A. , Terahata , K. , Jin , K. , and Daisho , Y. A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock --- SAE Int. J. Engines 7 1 87 95 2014 10.4271/2014-01-1066
  10. Nakama , K. , Murase , E. , Kusaka , J. , Daisho , Y. Knock Prediction Using Multi-Dimensional Modeling on Gasoline Engines JSAE Review of Automotive Engineering 26 277 284 2005
  11. Nakama , K. , Kusaka , J. , and Daisho , Y. Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation SAE Technical Paper 2006-32-0034 2006 10.4271/2006-32-0034
  12. Glassman , I. Combustion Second Academic Press 20 21 0-12-285851-4
  13. FORTÉ Reaction Design 2014
  14. Anthony , A. KIVA3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves Los Alamos National Laboratory 1997
  15. CHEMKIN-PRO Version 15131 Reaction Design San Diego 2013
  16. Golovitchev , V. I. http://www.tfd.chalmers.se/∼valeri/MECH.html Chalmers University of Technology Sweden 2000
  17. Metghalchi , M. , and Keck , J. C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressures and temperatures Combustion and Flame 48 191 210 1982 10.1016/00102180(82)90127-4
  18. Gulder , O. L. Correlations of laminar combustion data for alternative S.I. engine fuels SAE Paper 841000 1984 10.4271/841000
  19. Peters N. Turbulent Combustion Cambridge University Press 2000
  20. Fan , L. , Li , G. , Han , Z. , and Reitz , R. Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine SAE Technical Paper 1999-01-0175 1999 10.4271/1999-01-0175
  21. Tan , Z. et al. An Ignition and Combustion Model based on the Level-Set Method for Spark Ignition Engine Multidimensional modeling Combustion and Flame 145 1-2 1 15 2006 10.1016/j.combustflame.2005.12.007
  22. Warnatz , J. , Maas , U. , and Dibble , R. W. Combustion-Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation 2 nd Springer 230 231 3-540-65228-0
  23. Muller , U. C. , Bollig , M. , and Peter , N. Approximations for Burning Velocities and Markstein Numbers for Lean Hydrocarbon and Methanol Flames Combustion and Flame 108 349 356 1997 10.1016/S0010-2180(96)00110-1
  24. Davis , S. G. , and Law , C. K. Laminar Flame Speeds and Oxidation Kinetics of iso-Octane-Air and n-Heptane-Air Flames Proceedings of Combustion Institute 27 521 527 1998 10.1016/S0082-0784(98)80442-6
  25. Huang , Y. , Sung , C. J. , and Eng , J. A. Laminar Flame Speed of Primary Reference Fuels and Reformer Gas Mixtures Combustion and Flame 139 239 251 2004 10.1016/j.combustflame.2004.08.011
  26. Kumar , K. Global Combustion Responses of Practical Hydrocarbon Fuels: n-Heptane, iso-Octane, n-Decane, n-Dodecane and Ethylene PhD. Thesis Mechanical and Aerospace Engineering Department, Case Western Reserve University 2007
  27. Jerzembeck , S. , Peter , N. , Desjardins , P. , and Pitsch , H. Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation Combustion and Flame 156 292 301 10.1016/j.combustflame.2008.11.009
  28. Galmiche , B. , Halter , F. , and Foucher , F. Effect of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of iso-Octane/Air Mixture Combustion and Flame 159 3286 3299 2012 10.1016/j.combustflame.2012.06.008
  29. Halter , F. , Tahtouch , T. , and Rousselle , C. M. Nonlinear Effects of Stretch on the Flame Front Propagation Combustion and Flame 157 1825 1832 2010 10.1016/j.combustflame.2010.05.013
  30. Bradley , A. , Hick , R. A. , Lawes , M. , Sheppard , C. G. W. et al. The Measurement of Laminar Burning Velocities and Markstein Numbers of Iso-octane-Air and Iso-octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb Combustion and Flame 115 126 144 1998 10.1016/S0010-2180(97)00349-0
  31. Ratnak , S. , Kusaka , J. , and Daisho , Y. 3D Simulations on Premixed Laminar Flame Propagation of iso-Octane/Air Mixture at Elevated Pressure and Temperature SAE Technical Paper 2015-01-0015 2015 10.4271/2015-01-0015
  32. Lim , T. , Anderson , R. , and Arpaci , V. Prediction of Spark Kernel Development in Constant Volume Combustion Combustion and Flame 69 303 316 1987 10.1016/0010-2180(87)90123-4
  33. Far , K. , Farzan , P. , Metghalchi , H. , and Keck , J. On flame kernel formation and propagation in premixed gases Combustion and Flame 157 2211 2221 2010 10.1016/j.combustflame.2010.07.0163
  34. Liang , L. , Reitz , R. , Iyer , C. , and Yi , J. Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics SAE Technical Paper 2007-01-0165 2007 10.4271/2007-01-0165
  35. Ratnak , S. , Katori , K. , Kusaka , J. , Daisho , Y. et al. Computational Study to Improve Thermal Efficiency of Spark Ignition Engine SAE Technical Paper 2015-01-0011 2015 10.4271/2015-01-0011
  36. Lutz , A. , Kee , R. , and Miller , J. SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis Sandia National Laboratories September 1996

Cited By