This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays
Technical Paper
2015-24-2463
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique. First an evaporation model for superheated droplets is implemented within the computational framework of STAR-CD, along with a full set of temperature dependent fuel properties. Then the computational tool is used to model the injection of flashing sprays through a six-hole asymmetric injector. The computational results are validated against optical experimental data obtained previously with the same injector by high-speed imaging techniques. The effects of ambient pressure (0.5 and 1.0 bar) and fuel temperature (20-180° C) on the non-flashing and flashing characteristics are examined. Effects of initial droplet size and break-up sub-models are also investigated. The computational methodology is able to reproduce important physical characteristics of flash-boiling sprays like the onset and extent of spray collapse. Based on the current observations, further improvements to the mathematical methodology used for the flash-boiling model are proposed.
Recommended Content
Authors
Citation
Price, C., Hamzehloo, A., Aleiferis, P., and Richardson, D., "Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays," SAE Technical Paper 2015-24-2463, 2015, https://doi.org/10.4271/2015-24-2463.Also In
References
- Nagumo S. and Hara S., “Study of fuel economy improvement through control of intake valve closing timing: cause of combustion deterioration and improvement,” JSAE Rev., vol. 16, pp. 13-19, 1995. doi:10.1016/0389-4304(94)00048-X.
- Ashgriz N., Handbook of atomization and sprays theory and applications. London: Springer, 2011.
- Song C., “An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel,” Catal. Today, vol. 86, pp. 211-263, 2003. doi:10.1016/S0920-5861(03)00412-7.
- Aleiferis P. G., Serras-Pereira J., van Romunde Z., Caine J., and Wirth M., “Mechanisms of spray formation and combustion from a multi-hole injector with E85 and gasoline,” Combust. Flame, vol. 157, no. 4, pp. 735-756, Apr. 2010. doi:10.1016/j.combustflame.2009.12.019.
- Serras-Pereira J., Aleiferis P. G., and Richardson D., “Imaging and Heat Flux Measurements of Wall Impinging Sprays of Hydrocarbons and Alcohols in a Direct-Injection Spark-Ignition Engine,” Fuel, vol. 91, no. 1, pp. 264-297, 2012. doi:10.1016/j.fuel.2011.07.03.
- Serras-Pereira J., Aleiferis P. G., Walmsley H. L., Davies T. J., and Cracknell R. F., “Heat Flux Characteristics of Spray Wall Impingement with Ethanol, Butanol, Iso-Octane, Gasoline and E10 Fuels,” Int. J. Heat Fluid Flow, vol. 44, pp. 662-683, 2013. doi:10.1016/j.ijheatfluidflow.2013.09.010.
- Aleiferis P. G., Behringer M., OudeNijeweme D., and Freeland P., “Spray Imaging and Droplet Sizing of Spark-Eroded and Laser-Drilled Injectors with Gasoline-Butanol and Gasoline-Ethanol Blends,” in Internaltional Conference on Fuel Systems for IC Engines IMechE, 2015.
- Aleiferis P. G., Serras-Pereira J., Augoye A., Davies T. J., Cracknell R. F., and Richardson D., “Effect of Fuel Temperature on In-Nozzle Cavitation and Spray Formation of Liquid Hydrocarbons and Alcohols from a Real-Size Optical Injector for Direct-Injection Spark-Ignition Engines,” Int. J. Heat Mass Transf., vol. 53, no. 21-22, pp. 4588-4606, 2010. doi:10.1016/j.ijheatmasstransfer.2010.06.033.
- Serras J., Aleiferis P. G., and Richardson D., “An experimental database on the effects of single and split injection strategies on spray formation and spark discharge in an optical DISI engine fuelled with gasoline, iso-octane and alcohols,” Int. J. Engine, pp. 1-70. doi:10.1177/1468087414554936.
- Aleiferis P. G. and van Romunde Z. R., “An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions,” Fuel, vol. 105, pp. 143-168, Mar. 2013. doi:10.1016/j.fuel.2012.07.04.
- Sher E., Bar-Kohany T., and Rashkovan A., “Flash-boiling atomization,” Prog. Energy Combust. Sci., vol. 34, no. 4, pp. 417-439, Aug. 2008. doi:10.1016/j.pecs.2007.05.001.
- Sher E. and Elata C., “Spray Formation from Pressure Cans by Flashing,” Ind. Eng. Chem. Process Des. Dev., vol. 16, no. 2, pp. 237-242, Apr. 1977. doi:10.1021/i260062a014.
- Kitamura Y., Morimitsu H., and Takahashi T., “Critical superheat for flashing of superheated liquid jets,” Ind. Eng. Chem. Fundam., vol. 25, no. 2, pp. 206-211, 1986. doi:10.1021/i100022a005.
- Levy M., Levy Y., and Sher E., “Spray structure as generated under homogeneous flash boiling nucleation regime,” Appl. Therm. Eng., vol. 73, no. 1, pp. 414-421, Dec. 2014. doi:10.1016/j.applthermaleng.2014.08.008.
- Adachi M., Tanaka D., Hojyo Y., Marwan A., Senda J., and Fujimoto H., “Measurment of Fuel Vapor Concentration in Flash Boiling Spray by Infrared Extinction/Scattering Technique,” JSAE Review, vol. 17, pp. 231-237, 1996. doi:10.1016/0389-4304(96)00025-2.
- Senda, J., Hojyo, Y., and Fujimoto, H., “Modelling of Atomization Process in Flash Boiling Spray,” SAE Technical Paper 941925, 1994, doi:10.4271/941925.
- Ra Y. and Reitz R. D., “The application of a multicomponent droplet vaporization model to gasoline direct injection engines,” Int. J. Engine Res., vol. 4, no. 3, pp. 193-218, Jan. 2003. doi:10.1243/146808703322223388.
- Polanco G., Holdø A. E., and Munday G., “General review of flashing jet studies,” J. Hazard. Mater., vol. 173, no. 1-3, pp. 2-18, Jan. 2010. doi:10.1016/j.jhazmat.2009.08.138.
- Issa R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting,” J. Comput. Phys., vol. 62, pp. 40-65, 1986. doi:10.1016/0021-9991(86)90099-9.
- Yakhot V., Orszag S. A., Thangam S., Gatski T. B., and Speziale C. G., “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids, vol 1510. 1992.
- Malcolm, J., Behringer, M., Aleiferis, P., Mitcalf, J. et al., “Characterisation of Flow Structures in a Direct-Injection Spark-Ignition Engine Using PIV, LDV and CFD,” SAE Technical Paper 2011-01-1290, 2011, doi:10.4271/2011-01-1290.
- Gosman A. D. and Loannides E., “Aspects of Computer Simulation of Liquid-Fueled Combustors,” J. Energy, vol. 7, no. 6, pp. 482-490, 1983. doi:10.2514/3.62687.
- Yaws C. L., Yaws' hanbook of thermodynamic and physical properties of chemical compounds: physical, thermodynamic and transport properties for 5,000 organic chemical compounds. 2003.
- Reitz R. D., “A Photographic Study of Flash-Boiling Atomization,” Aerosol Sci. Technol., vol. 12, no. 3, pp. 561-569, Jun. 2007. doi:10.1080/02786829008959370.
- Serras-Pereira J., van Romunde Z., Aleiferis P. G., Richardson D., Wallace S., and Cracknell R. F., “Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle,” Fuel, vol. 89, no. 9, pp. 2592-2607, Sep. 2010.
- Butcher A. J., Aleiferis P. G., and Richardson D., “Development of a Real-Size Optical Injector Nozzle for Studies of Cavitation, Spray Formation and Flash Boiling at Conditions Relevant to Direct-Injection Spark-Ignition Engines,” Int. J. Engine Res., vol. 14, pp. 557-577, 2013. doi:10.1177/1468087413497004.
- Bird R., Stewart W., and Lightfoot E., Transport phenomena. 1966.
- Spalding D. B., “The combustion of liquid fuels,” Symp. Combust., vol. 4, pp. 847-864, 1953.
- Adachi, M., McDonell, V., Tanaka, D., Senda, J. et al., “Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray,” SAE Technical Paper 970871, 1997, doi:10.4271/970871.
- E. Wakil, M, M, A. Uyehara, O, and S. Myers, P, “A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air,” Natl. Advis. Com. Aeronaut., 1954.
- Reitz, R. and Diwakar, R., “Effect of Drop Breakup on Fuel Sprays,” SAE Technical Paper 860469, 1986, doi:10.4271/860469.
- O'Rourke, P. and Amsden, A., “The Tab Method for Numerical Calculation of Spray Droplet Breakup,” SAE Technical Paper 872089, 1987, doi:10.4271/872089.
- Schmidt D. P. and Rutland C. J., “A New Droplet Collision Algorithm,” J. Comput. Phys., vol. 164, no. 1, pp. 62-80, Oct. 2000. doi:10.1006/jcph.2000.6568.
- Nordin N., “Complex Chemisty Modeling of Diesel Spray Combustion.” Doctroral Thesis, Chalmers University of Technology, 2001.
- Aleiferis P. G., Ashrafi-Nik M., Ladommatos N., Dober G., and K. K, “A study of droplet collision modelling for spray formation and mixing with a two-row group-hole injection nozzle for diesel engines,” At. Sprays. doi:10.1615/AtomizSpr.2014011025.
- van Romunde, Z., Aleiferis, P., Cracknell, R., and Walmsley, H., “Effect of Fuel Properties on Spray Development from a Multi-Hole DISI Engine Injector,” SAE Technical Paper 2007-01-4032, 2007, doi:10.4271/2007-01-4032.
- Van Romunde Z. and Aleiferis P. G., “Effect of operating conditions and fuel volatility on development and variability of sprays from gasoline direct-injection multihole injectors,” At. Sprays, vol. 19, pp. 207-234, 2009. doi:10.1615/AtomizSpr.v19.i3.10.
- Razzaghi M., “Droplet size estimation of two-phase flashing jets,” Nucl. Eng. Des., vol. 114, pp. 115-124, 1989. doi:10.1016/0029-5493(89)90130-1.
- Fansler T. D., Drake M. C., Gajdeczko B., Düwel I., Koban W., Zimmermann F. P., and Schulz C., “Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence,” Meas. Sci. Technol., vol. 20, p. 125401, 2009. doi:10.1088/0957-0233/20/12/125401.
- Hamzehloo A. and Aleiferis P. G., “Large eddy simulation of highly turbulent under-expanded hydrogen and methane jets for gaseous-fuelled internal combustion engines,” Int. J. Hydrogen Energy, vol. 39, no. 36, pp. 21275-21296, 2014. doi:10.1016/j.ijhydene.2014.10.016.
- Zhang M., Xu M., Zhang Y., Zhang G., and Cleary D. J., “Flow-Field Investigation of Multihole Superheated Sprays Using High-Speed Piv. Part Ii. Axial Direction,” At. Sprays, vol. 23, no. 2, pp. 119-140, 2013. doi:10.1615/AtomizSpr.2013007454.
- Behringer, M., Aleiferis, P., OudeNijeweme, D., and Freeland, P., “Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels,” SAE Int. J. Fuels Lubr. 7(3):803-822, 2014, doi:10.4271/2014-01-2745.
- Park B. and Lee S., “An experimental investigation of the flash atomization mechanism,” At. Sprays, vol. 4, pp. 159-179, 1994. doi:10.1615/AtomizSpr.v4.i2.30.