This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions

Journal Article
2015-01-9074
ISSN: 1946-3952, e-ISSN: 1946-3960
Published November 01, 2015 by SAE International in United States
Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions
Sector:
Citation: Yang, S., Naser, N., Chung, S., and Cha, J., "Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel, n-Heptane, and iso-Octane Fuels under Low Temperature Conditions," SAE Int. J. Fuels Lubr. 8(3):537-548, 2015, https://doi.org/10.4271/2015-01-9074.
Language: English

References

  1. EN 590 2009+ A1 2010, Automotive fuels - Diesel - Requirements and test methods
  2. www.arb.ca.gov/enf/fuels/dieselspecs.pdf
  3. ASTM D 613 Test method for cetane number of diesel fuel oil American Society of Testing Materials
  4. Yanowitz , J. , Ratcliff , M. A. , McCormick , R. L. , Taylor , J. D. et al. Compendium of experimental cetane numbers National Renewable Energy Laboratory (NREL), technical report NREL/TP-5400-61693 2014
  5. Allard , L. , Hole , N. , Webster , G. , Ryan , T. et al. Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II SAE Technical Paper 971636 1997 10.4271/971636
  6. Metcalf , O. , Swarts , A. , and Yates , A. A Study of the Ignition-Delay Character of n-Heptane in the IQT™ Combustion Bomb Using CFD Modelling SAE Technical Paper 2007-01-0021 2007 10.4271/2007-01-0021
  7. Ryan , T. and Stapper , B. Diesel Fuel Ignition Quality as Determined in a Constant Volume Combustion Bomb SAE Technical Paper 870586 1987 10.4271/870586
  8. ASTM D6890 Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber American Society of Testing Materials
  9. Ciezki , H. K. , and Adomeit , G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions Combust. Flame 93 4 421 433 1993 10.1016/0010-2180(93)90142-P
  10. Wurmel , J. , Simmie , J. M. , and Curran , H. J. Studying the chemistry of HCCI in rapid compression machines Int. J. Vehicle Design 44 84 106 2007
  11. Griffiths , J. F. , Halford-Maw , P. A. , and Rose , D. J. Fundamental features of hydrocarbon autoignition in a rapid compression machine Combust. Flame 95 3 291 306 1993 10.1016/0010-2180(93)90133-N
  12. Pfahl , U. , Fieweger , K. , and Adomeit , G. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions Proc. Combust. Inst. 26 781 789 1996
  13. Allen , C. , Mittal , G. , Sung , C. J. , Toulson , E. et al. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels Proc. Combust. Inst. 33 3367 3374 2011
  14. Allen , C. , Toulson , E. , Edwards , T. , and Lee , T. Application of a novel charge preparation approach to testing the autoignition characteristics of JP-8 and camelina hydroprocessed renewable jet fuel in a rapid compression machine Combust. Flame 159 9 2780 2788 2012 10.1016/j.combustflame.2012.03.019
  15. Kalghatgi , G. Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines SAE Technical Paper 2005-01-0239 2005 10.4271/2005-01-0239
  16. Kobori , S. , Kamimoto , T. , and Aradi , A. A. A Study of Ignition Delay of Diesel Fuel Sprays SAE Int. J. Engine Research 1 29 39 2000
  17. Zheng , Z. , Badawy , T. , Henein , N. , and Sattler , E. Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester J. Eng. Gas Turbines Power 135 061501 061501-11 2013
  18. Bogin , G. , Osecky , E. , Chen , J.Y. , Ratcliff , M. A. et al. Experiments and Computational Fluid Dynamics Modeling Analysis of Large n-Alkane Ignition Kinetics in the Ignition Quality Tester Energy Fuels 28 4781 4794 2014 dx.doi.org/10.1021/ef500769j
  19. Bogin , G. , Dean , A. , Ratcliff , M. , Luecke , J. et al. Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels SAE Int. J. Fuels Lubr. 3 1 353 367 2010 10.4271/2010-01-0741
  20. Cleveland , W. S. , and Devlin , S. J. Locally weighted regression: an approach to regression analysis by local fitting J. American Statistical Association 83 596 610 1988
  21. Bogin , G. , Osecky , E. , Ratcliff , M. A. , Luecke , J. et al. Ignition Quality Tester (IQT) Investigation of the Negative Temperature Coefficient Region of Alkane Autoignition Energy Fuels 27 1632 1642 2013
  22. Tanaka , S. , Ayala , F. , Keck , J. C. , and Heywood , J. B. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives Combust. Flame 132 219 239 2003 10.1016/S0010-2180(02)00457-1
  23. Tazerout , M. , Le Corre , O. , and Ramesh , A. A New Method to Determine the Start and End of Combustion in an Internal Combustion Engine Using Entropy Changes Int. J. Applied Thermodynamics 3 2 49 55 2000
  24. Pischinger , F. , Scheid , E. , and Reuter , U. Influences of fuel quality and injection parameters on self-ignition of sprays CIMAC, D112 1987
  25. Fraser , R. , Siebers , D. , and Edwards , C. Autoignition of Methane and Natural Gas in a Simulated Diesel Environment SAE Technical Paper 910227 1991 10.4271/910227
  26. Kim , S. K. , Yu , Y. , Ahn , J. , and Kim , Y. M. Numerical Investigation of the Autoignition of Turbulent Gaseous Jets in a High-Pressure Environment Using the Multiple-RIF Model Fuel 83 375 386 2004
  27. Minetti , R. , Carlier , M. , Ribaucour , M. , Therssen , E. et al. Comparison of Oxidation and Autoignition of the two Primary Reference Fuels by Rapid Compression Proc. Combust. Inst. 26 747 753 1996
  28. Buda , F. , Bounaceur , R. , Warth , V. , Glaude , P. A. et al. Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K Combust. Flame 142 170 186 2005
  29. Shen , H. S. , Steinberg , J. , Vanderover , J. , and Oehlschlaeger , M.A. A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures Energy Fuels 23 2482 2489 2009
  30. Tanaka , S. , Ayala , F. , and Keck , J. C. A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine Combust. Flame 133 467 481 2003
  31. Fieweger , K. , Blumenthal , R. , and Adomeit , G. Shock-Tube Investigations on the Self-Ignition of Hydrocarbon-air Mixtures at High Pressures Proc. Combust. Inst. 25 1579 1585 1994

Cited By