Unsteady Aerodynamics of a 3D Wing Hosting Synthetic Jet Actuators

2015-01-2455

09/15/2015

Event
SAE 2015 AeroTech Congress & Exhibition
Authors Abstract
Content
The implementation of Synthetic Jet Actuators (SJAs) on Unmanned Aerial Vehicles (UAVs) provides a safe test-bed for analysis of improved performance, in the hope of certification of this technology on commercial aircraft in the future. The use of high resolution numerical methods (i.e. CFD) to capture the details of the effects of SJAs on flows and on the hosting lifting surface are computationally expensive and time-consuming, which renders them ineffective for use in real-time flow control implementations. Suitable alternatives include the use of Reduced Order Models (ROMs) to capture the lower resolution overall effects of the jets on the flow and the hosting structure. This research paper analyses the effects of SJAs on aircraft wings using a ROM for the purpose of determining the unsteady aerodynamic forces modified by the presence of the SJAs. The model developed is a 3D unsteady panel code where the jets are represented by source panels. This code has the ability to model thick 3D trapezoidal wings with sweep and dihedral, accepting any aerofoil coordinate file. Multiple rows of SJAs can also be applied where desired. In order to validate the panel code, comparisons are made with past experimental data and other numerical methods like the vortex lattice method and CFD. There is avenue for further work in implementing a robust control architecture around SJA technologies, which in the future could serve as replacements for traditional hinged flight control surfaces and flutter suppression solutions.
Meta TagsDetails
DOI
https://doi.org/10.4271/2015-01-2455
Pages
11
Citation
Jaswantlal, R., Marzocca, P., and Palacios, R., "Unsteady Aerodynamics of a 3D Wing Hosting Synthetic Jet Actuators," SAE Technical Paper 2015-01-2455, 2015, https://doi.org/10.4271/2015-01-2455.
Additional Details
Publisher
Published
Sep 15, 2015
Product Code
2015-01-2455
Content Type
Technical Paper
Language
English