The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x
 This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

Published April 14, 2015 by SAE International in United States
An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine
Sector:
Citation: Dennis, P., Brear, M., Watson, H., Orbaiz, P. et al., "An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine," SAE Int. J. Engines 8(4):1750-1767, 2015, https://doi.org/10.4271/2015-01-1659.
Language: English

References

  1. Woschni, G., “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper 670931, 1967, doi:10.4271/670931.
  2. Annand, W.J.D., “Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines,” Proceedings of the Institute of Mechanical Engineers 177(36):973-990, 1963.
  3. Demuynck, J., Paepe, M.D., Huisseune, H., Sierens, R. et al., “On the applicability of empirical heat transfer models for hydrogen combustion engines,” International Journal of Hydrogen Energy 36(1):975-984, 2011, ISSN 0360-3199, doi:10.1016/j.ijhydene.2010.10.059.
  4. Shudo, T. and Suzuki, H., “Applicability of heat transfer equations to hydrogen combustion,” JSAE Review 23:303-308, 2002.
  5. Nefischer, A., Hallmannsegger, M., Wimmer, A., and Pirker, G., “Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines,” SAE Int. J. Engines 2(1):1251-1264, 2009, doi:10.4271/2009-01-1423.
  6. Shudo, T. and Suzuki, H., “New Heat Transfer Equation Applicable to Hydrogen-Fuelled Engines,” ASME Fall Technical Conference Paper No. ICEF2002-515 39:335-342, Sep. 2002.
  7. Abedin, M.J., Masjuki, H.H., Kalam, M.A., Sanjid, A. et al., “Energy balance of internal combustion engines using alternative fuels,” Renewable and Sustainable Energy Reviews 26:20-33, 2013.
  8. Demuynck, J., Chana, K., De Paepe, M., and Verhelst, S., “Evaluation of a Flow-Field-Based Heat Transfer Model for Premixed Spark-Ignition Engines on Hydrogen,” SAE Technical Paper 2013-01-0225, 2013, doi:10.4271/2013-01-0225.
  9. Demuynck, J., Raes, N., Zuliani, M., Paepe, M.D. et al., “Local heat flux measurements in a hydrogen and methane spark ignition engine with a thermopile sensor,” International Journal of Hydrogen Energy 34(24):9857-9868, 2009, ISSN 0360-3199, doi:10.1016/j.ijhydene.2009.10.035.
  10. Lodi, F.S., “Reducing Cold Start Fuel Consumption Through Improved Thermal Management,” Ph.D. thesis, Department of Mechanical and Manufacturing Engineering, The University of Melbourne, 2008.
  11. Kubicki, M.J., “Advanced Piston Design,” Ph.D. thesis, Department of Mechanical and Manufacturing Engineering, University of Melbourne, 2002.
  12. Lee, H. and O'Neill, A., “Comparison of Boiling Curves between a Standard S.I. Engine and a Flow Loop for a Mixture of Ethylene Glycol and Water,” SAE Technical Paper 2006-01-1231, 2006, doi:10.4271/2006-01-1231.
  13. Rahman, M.M., Hamada, K.I., Rashid, A., and Aziz, A., “Characterization of the time-averaged overall heat transfer in a direct-injection hydrogen-fueled engine,” International Journal of Hydrogen Energy 38:4816-4830, 2013.
  14. Shudo, T. and Nabetani, S., “Analysis of Degree of Constant Volume and Cooling Loss in a Hydrogen Fuelled SI Engine,” SAE Technical Paper 2001-01-3561, 2001, doi:10.4271/2001-01-3561.
  15. Sierens, R., Demuynck, J., Paepe, M.D., and Verhelst, S., “Heat Transfer Comparison Between Methane and Hydrogen in a Spark Ignited Engine,” Proceedings of the World Hydrogen Energy Conference 2010, 2010.
  16. Gamma Technologies Inc., GT-Suite User's Manual, Version 7.3, 2013.
  17. Dennis, P., Dingli, R., Abbasi Atibeh, P., Watson, H. et al., “Performance of a Port Fuel Injected, Spark Ignition Engine Optimised for Hydrogen Fuel,” SAE Technical Paper 2012-01-0654, 2012, doi:10.4271/2012-01-0654.
  18. Furuhama, S. and Suzuki, H., “Temperature Distribution of Piston Rings and Piston in High Speed Diesel Engine,” Bulletin of the JSME 22(174-12):1788-1795, 1979.
  19. Gamma Technologies Inc., “GT-SUITE V7.2 & V7.3,” Software Package, 2012, URL http://www.gtisoft.com.
  20. Verhelst, S. and Wallner, T., “Hydrogen-fueled internal combustion engines,” Progress in Energy and Combustion Science 35:490-527, 2009.
  21. Scott, R., Denton, W., and Nicholls, C. (Editors), Technology and Uses of Liquid Hydrogen (Elsevier Science, 2013), ISBN 9781483156422.
  22. Heywood, J.B., Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  23. Donahue, R. and Fabiyi, P., “Manufacturing Feasibility of All-Aluminum Automotive Engines Via Application of High Silicon Aluminum Alloy,” SAE Technical Paper 2000-01-0061, 2000, doi:10.4271/2000-01-0061.
  24. Chen, J.C., “A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow,” Industrial Engineering Chemistry 5(3):322-329, 1966.
  25. Webb, R.L. and Gupte, N.S., “A Critical Review of Correlations for Convective Vaporization in Tubes and Tube Banks,” Heat Transfer Engineering 13(3):58-81, 1992.
  26. Lee, H., “Heat Transfer Predictions using the Chen Correlation on Subcooled Flow Boiling in a Standard IC Engine,” SAE Technical Paper 2009-01-1530, 2009, doi:10.4271/2009-01-1530.
  27. Makkapati, S., Poe, S., Shaikh, Z., Cross, R. et al., “Coolant Velocity Correlations in an IC Engine Coolant Jacket,” SAE Technical Paper 2002-01-1203, 2002, doi:10.4271/2002-01-1203.
  28. Bohne, D., Fischer, S., and Obermeier, E., “Thermal Conductivity, Density, Viscosity and Prandtl-Numbers of Ethylene Glycol-Water Mixtures,” Berichte der Bunsengesellschaft für Physikalische Chemie 88:739-742, 1984.
  29. Tang, X., Kabat, D., Natkin, R., Stockhausen, W. et al., “Ford P2000 Hydrogen Engine Dynamometer Development,” SAE Technical Paper 2002-01-0242, 2002, doi:10.4271/2002-01-0242.
  30. Abbasi Atibeh, P., Dennis, P.A., Orbaiz, P.J., Brear, M.J. et al., “Lean limit combustion analysis for a spark ignition natural gas internal combustion engine,” Combustion Science and Technology 185:1151-1168, 2013.
  31. Abbasi Atibeh, P., Dennis, P., Orbaiz, P., Brear, M. et al., “Lean Burn Performance of a Natural Gas Fuelled, Port Injected, Spark Ignition Engine,” SAE Technical Paper 2012-01-0822, 2012, doi:10.4271/2012-01-0822.
  32. Orbaiz, P., Brear, M., Abbasi, P., and Dennis, P., “A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas,” SAE Int. J. Engines 6(1):23-44, 2013, doi:10.4271/2013-01-0229.
  33. Orbaiz, P. and Brear, M., “Energy Balance of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas,” SAE Technical Paper 2014-01-1337, 2014, doi:10.4271/2014-01-1337.
  34. Nakajima, Y., Yamane, K., Shudo, T., Hiruma, M. et al., “Research and Development of a Hydrogen-Fueled Engine for Hybrid Electric Vehicles,” SAE Technical Paper 2000-01-0993, 2000, doi:10.4271/2000-01-0993.
  35. Obermair, H., Scarcelli, R., and Wallner, T., “Efficiency Improved Combustion System for Hydrogen Direct Injection Operation,” SAE Technical Paper 2010-01-2170, 2010, doi:10.4271/2010-01-2170.

Cited By