This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

Journal Article
ISSN: 1946-3995, e-ISSN: 1946-4002
Published April 14, 2015 by SAE International in United States
Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern
Citation: Schnepf, B., Schütz, T., and Indinger, T., "Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern," SAE Int. J. Passeng. Cars - Mech. Syst. 8(1):261-274, 2015,
Language: English


  1. Wickern, G., Zwicker, K., and Pfadenhauer, M., “Rotating Wheels - Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results,” SAE Technical Paper 970133, 1997, doi:10.4271/970133.
  2. Fackrell, J., Harvey, J., “The Flow Field and Pressure Distribution of an Isolated Road Wheel,” In Stevens, H.S. (Ed.1973) Advances in Road Vehicle Aerodynamics, BHRA Fluid Engineering, Cranfield, p. 155-165, 1973.
  3. Fackrell, J., Harvey, J., “The Aerodynamics of an Isolated Road Wheel,” Proceedings of the Second AIAA Symposium on Aerodynamics of Sports and Competition Automobiles, Vol. 16, May, 1974.
  4. Cogotti, A., “Aerodynamic Characteristics of Car Wheels,” Int. J. of Vehicle Design, SP3, 1983.
  5. Mercker, E., Berneburg, H., “On the Simulation of Road Driving of a Passenger Car in a Windtunnel Using a Moving Belt and Rotating Wheels,” Lecture at the Third International Conference Innovation and Reliability in Automotive Design and Testing, Florence, 1992.
  6. Potthoff, J., Fiedler, R., “Simulation der Raddrehung bei aerodynamischen Untersuchungen an Kraftfahrzeugen im Windkanal,” Tagung “Aerodynamik des Kraftfahrzeugs” Nr. E30-906-056-5, HdT Essen, 1995.
  7. Mears, A., “The Aerodynamic Characteristics of an Exposed Racing Car Wheel,” PhD thesis, Durham University, 2004,
  8. Knowles, R., “Monoposto Racecar Wheel Aerodynamics: Investigation of Near-Wake Structure & Support-Sting Interference,” PhD thesis, Cranfield University, 2005,
  9. Wäschle, A., “Numerische und experimentelle Untersuchung des Einflusses von drehenden Rädern auf die Fahrzeugaerodynamik,” Dissertation, Universität Stuttgart, 2006.
  10. Saddington, A., Knowles, R., Knowles, K., “Laser Doppler anemometry measurements in the near-wake of an isolated Formula One wheel,” Experiments in Fluids, Volume 42, Issue 5, pp.671-681, 2007,
  11. Axerio, J., Iaccarino, G., “Asymmetries in the Wake Structure of a Formula 1 Tire,” Proceedings of the Sixth International Symposium on Turbulence and Shear Flow Phenomena, Seoul, Korea, pp. 523-528, 2009.
  12. Issakhanian, E., Elkins, C., Lo, K., Eaton, J., “An Experimental Study of the Flow Around a Formula One Racing Car Tire,” J. Fluids Eng. Vol.132/7, 071103, 2010,
  13. Sprot, A., “Open-Wheel Aerodynamics: Effects of Tyre Deformation and Internal Flow, Durham theses, Durham University, 2013,
  14. Schnepf, B., Tesch, G., Indinger, T., “Investigations on the Flow Around Wheels Using Different Road Simulation Tools,” In: Wiedemann, J. (ed.), “Progress in Vehicle Aerodynamics and Thermal Management - Proceedings of the 9th FKFS Conference,” Expert Verlag, ISBN-13: 978-3-8169-3253-6, 2013.
  15. Duell, E., Kharazi, A., Muller, S., Ebeling, W. et al., “The BMW AVZ Wind Tunnel Center,” SAE Technical Paper 2010-01-0118, 2010, doi:10.4271/2010-01-0118.
  16. Petz, R., Charwat, M., “Das AeroLAB der BMW Group: Fahrzeugmessungen mit dem Single-Rolling-Road System,” Haus der Technik, 10. Tagung Fahrzeug-Aerodynamik, 4-5 July, Munich, Germany, 2012.
  17. Aeroprobe Corporation, “Omniprobe User Manual,” Document No. 90001-02-UMN-03, Revision A, April 2014.
  18. Exa Corporation, “PowerFLOW® User's Guide Release 5.0,” 2013.
  19. Tu, J., Yeoh, G. H., Liu, C., “Computational Fluid Dynamics -A Practical Approach (2nd Edition),” Elsevier, ISBN: 978-0-08-098243-4, 2013.

Cited By