This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends
Technical Paper
2015-01-1242
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition.
Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed. Finally, the influence of NO on autoignition is investigated, yielding results that are consistent with prior works. Overall, the same, two-zone kinetic model appears to capture both the UFI and DI autoignition similarly well. These results also provide further evidence suggesting that inclusion of a NO sub-model is necessary for mechanistically accurate modeling of autoignition and knock in general.
Recommended Content
Authors
Citation
Yuan, H., Foong, T., Chen, Z., Yang, Y. et al., "Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends," SAE Technical Paper 2015-01-1242, 2015, https://doi.org/10.4271/2015-01-1242.Also In
References
- Stein, R., Polovina, D., Roth, K., Foster, M. et al., “Effect of Heat of Vaporization, Chemical Octane, and Sensitivity on Knock Limit for Ethanol - Gasoline Blends,” SAE Int. J. Fuels Lubr. 5(2):823-843, 2012, doi:10.4271/2012-01-1277.
- Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J., “Kinetic modeling of gasoline surrogate components and mixtures under engine conditions,” Proc. Combust. Inst. 33(1):193-200, 2011, doi:10.1016/j.proci.2010.05.027.
- Dagaut, P. and Nicolle, A., “Experimental study and detailed kinetic modeling of the effect of exhaust gas on fuel combustion: mutual sensitization of the oxidation of nitric oxide and methane over extended temperature and pressure ranges,” Combust. Flame 140(3):161-171, 2005, doi:10.1016/j.combustflame.2004.11.003.
- Foong, T.M., Morganti, K.J., Brear, M.J., Silva, G. da, Yang, Y., and Dryer, F.L., “The octane numbers of ethanol blended with gasoline and its surrogates,” Fuel 115:727-739, 2014, doi:10.1016/j.fuel.2013.07.105.
- Foong, T., Morganti, K., Brear, M., da Silva, G. et al., “The Effect of Charge Cooling on the RON of Ethanol/Gasoline Blends,” SAE Int. J. Fuels Lubr. 6(1):34-43, 2013, doi:10.4271/2013-01-0886.
- Kasseris, E. and Heywood, J., “Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 1-Quantifying Charge Cooling,” SAE Technical Paper 2012-01-1275, 2012, doi:10.4271/2012-01-1275.
- Kasseris, E. and Heywood, J., “Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers,” SAE Int. J. Fuels Lubr. 5(2):844-854, 2012, doi:10.4271/2012-01-1284.
- Speth, R.L., Chow, E.W., Malina, R., Barrett, S.R.H., Heywood, J.B., and Green, W.H., “Economic and Environmental Benefits of Higher-Octane Gasoline,” Environ. Sci. Technol. 48(12):6561-6568, 2014, doi:10.1021/es405557p.
- Leone, T., Olin, E., Anderson, J., Jung, H. et al., “Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine,” SAE Int. J. Fuels Lubr. 7(1):9-28, 2014, doi:10.4271/2014-01-1228.
- Anderson, J.E., DiCicco, D.M., Ginder, J.M., Kramer, U., Leone, T.G., Raney-Pablo, H.E., and Wallington, T.J., “High octane number ethanol-gasoline blends: Quantifying the potential benefits in the United States,” Fuel 97:585-594, 2012, doi:10.1016/j.fuel.2012.03.017.
- Anderson, J.E., Kramer, U., Mueller, S.A., and Wallington, T.J., “Octane Numbers of Ethanol' and Methanol-Gasoline Blends Estimated from Molar Concentrations,” Energy Fuels 24(12):6576-6585, 2010, doi:10.1021/ef101125c.
- Anderson, J., Leone, T., Shelby, M., Wallington, T. et al., “Octane Numbers of Ethanol-Gasoline Blends: Measurements and Novel Estimation Method from Molar Composition,” SAE Technical Paper 2012-01-1274, 2012, doi:10.4271/2012-01-1274.
- Hirshfeld, D.S., Kolb, J.A., Anderson, J.E., Studzinski, W., and Frusti, J., “Refining Economics of U.S. Gasoline: Octane Ratings and Ethanol Content,” Environ. Sci. Technol. 48(19):11064-11071, 2014, doi:10.1021/es5021668.
- Jung, H., Leone, T., Shelby, M., Anderson, J. et al., “Fuel Economy and CO2 Emissions of Ethanol-Gasoline Blends in a Turbocharged DI Engine,” SAE Int. J. Engines 6(1):422-434, 2013, doi:10.4271/2013-01-1321.
- Silva, G. da, Bozzelli, J.W., Liang, L., and Farrell, J.T., “Ethanol Oxidation: Kinetics of the α-Hydroxyethyl Radical + O2 Reaction,” J. Phys. Chem. A 113(31):8923-8933, 2009, doi:10.1021/jp903210a.
- Simmie, J.M., “Detailed chemical kinetic models for the combustion of hydrocarbon fuels,” Prog. Energy Combust. Sci. 29(6):599-634, 2003, doi:10.1016/S0360-1285(03)00060-1.
- Battin-Leclerc, F., “Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates,” Prog. Energy Combust. Sci. 34(4):440-498, 2008, doi:10.1016/j.pecs.2007.10.002.
- Zádor, J., Taatjes, C.A., and Fernandes, R.X., “Kinetics of elementary reactions in low-temperature autoignition chemistry,” Prog. Energy Combust. Sci. 37(4):371-421, 2011, doi:10.1016/j.pecs.2010.06.006.
- Morganti, K.J., Brear, M.J., Silva, G. da, Yang, Y., and Dryer, F.L., “The autoignition of Liquefied Petroleum Gas (LPG) in spark-ignition engines,” Proc. Combust. Inst., Sep. 2014, doi:10.1016/j.proci.2014.06.070.
- Stenlåås, O., Einewall, P., Egnell, R., and Johansson, B., “Measurement of Knock and Ion Current in a Spark Ignition Engine with and without NO Addition to the Intake Air,” SAE Technical Paper 2003-01-0639, 2003, doi:10.4271/2003-01-0639.
- Roberts, P. and Sheppard, C., “The Influence of Residual Gas NO Content on Knock Onset of Iso-Octane, PRF, TRF and ULG Mixtures in SI Engines,” SAE Int. J. Engines 6(4):2028-2043, 2013, doi:10.4271/2013-01-9046.
- Cowart, J.S., Keck, J.C., Heywood, J.B., Westbrook, C.K., and Pitz, W.J., “Engine knock predictions using a fully-detailed and a reduced chemical kinetic mechanism,” Symp. Int. Combust. 23(1):1055-1062, 1991, doi:10.1016/S0082-0784(06)80364-4.
- Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K., and Leppard, W.R., “Autoignition chemistry in a motored engine: An experimental and kinetic modeling study,” Symp. Int. Combust. 26(2):2669-2677, 1996, doi:10.1016/S0082-0784(96)80102-0.
- Andrae, J.C.G., “Development of a detailed kinetic model for gasoline surrogate fuels,” Fuel 87(10-11):2013-2022, 2008, doi:10.1016/j.fuel.2007.09.010.
- Syed, I., Mukherjee, A., and Naber, J., “Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.,” SAE Technical Paper 2011-01-0341, 2011, doi:10.4271/2011-01-0341.
- Perumal, M. and Floweday, G., “An Investigation of Cascading Autoignition and Octane Number using a Multi-zone Model of the CFR Engine,” SAE Int. J. Engines 4(1):976-997, 2011, doi:10.4271/2011-01-0850. Erratum published in SAE Int. J. Engines 5(3):1533, 2012, doi:10.4271/2011-01-0850ERR.
- Sileghem, L., Wallner, T., and Verhelst, S., “A quasi-dimensional model for SI engines fueled with gasoline-alcohol blends: Knock modeling,” Fuel 140:217-226, 2015, doi:10.1016/j.fuel.2014.09.091.
- Hajireza, S., Sundén, B., and Mauss, F., “A Three-Zone Model for Investigation of Gas Behavior in the Combustion Chamber of SI Engines in Relation to Knock,” SAE Technical Paper 1999-01-0219, 1999, doi:10.4271/1999-01-0219.
- D'Errico, G., Lucchini, T., Onorati, A., Mehl, M. et al., “Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions,” SAE Technical Paper 2007-01-0938, 2007, doi:10.4271/2007-01-0938.
- Hajireza, S., Mauss, F., and Sundén, B., “Two-zone model of gas thermodynamic state in SI engines with relevance for knock,” In COMODIA: 203-208, 1998.
- Ahmedi, A., Stenlåås, O., Sundén, B., Egnell, R., & Mauss, F. (2006, January). Engine Knock Prediction Using Multi Zone Model for Spark Ignition Engines. In ASME 2006 Internal Combustion Engine Division Fall Technical Conference (pp. 199-208). American Society of Mechanical Engineers.
- Gogan, A., Sundén, B., Montorsi, L., Ahmedand, S. et al., “Knock Modeling: an Integrated Tool for Detailed Chemistry and Engine Cycle Simulation,” SAE Technical Paper 2003-01-3122, 2003, doi:10.4271/2003-01-3122.
- Foong, T.M., “On the Autoignition of Ethanol/Gasoline Blends in Spark-Ignition Engines,” Ph.D., The University of Melbourne, Australia -- Melbourne, 2013.
- Gamma Technologies, GT-Power user's manual, version 7.3, 2012.
- Pera, C. and Knop, V., “Methodology to define gasoline surrogates dedicated to auto-ignition in engines,” Fuel 96:59-69, 2012, doi:10.1016/j.fuel.2012.01.008.
- Anderson, J., Leone, T., Shelby, M., Wallington, T. et al., “Octane Numbers of Ethanol-Gasoline Blends: Measurements and Novel Estimation Method from Molar Composition,” SAE Technical Paper 2012-01-1274, 2012, doi:10.4271/2012-01-1274.
- Woschni, G., “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper 670931, 1967, doi:10.4271/670931.
- Goodwin, D.G., “An open source, extensible software suite for CVD process simulation,” Technical report, Division of Engineering and Applied Science, California Institute of Technology, 2003.