This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Guide for the Focused Utilization of Aging Models for Lithium-Ion Batteries - An Automotive Perspective

Journal Article
ISSN: 1946-4614, e-ISSN: 1946-4622
Published April 14, 2015 by SAE International in United States
Guide for the Focused Utilization of Aging Models for Lithium-Ion Batteries - An Automotive Perspective
Citation: Meis, C., Mueller, S., Rohr, S., Kerler, M. et al., "Guide for the Focused Utilization of Aging Models for Lithium-Ion Batteries - An Automotive Perspective," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(1):195-206, 2015,
Language: English


  1. Zenati, A., Desprez, P., and Razik, H., “Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference,” IECON 2010 - 36th Annual Conference of IEEE Industrial Electronics, Glendale, AZ, USA:1773-1778.
  2. Dubarry, M., Truchot, C., and Liaw, B.Y., “Synthesize battery degradation modes via a diagnostic and prognostic model,” Journal of Power Sources 219:204-216, 2012, doi:10.1016/j.jpowsour.2012.07.016.
  3. Cannarella, J. and Arnold, C.B., “State of health and charge measurements in lithium-ion batteries using mechanical stress,” Journal of Power Sources 269:7-14, 2014, doi:10.1016/j.jpowsour.2014.07.003.
  4. Ecker, M., Gerschler, J.B., Vogel, J., Käbitz, S. et al., “Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,” Journal of Power Sources(215):248-257, 2012, doi:10.1016/j.jpowsour.2012.05.012.
  5. Bourlot, S., Blanchard, P., and Robert, S., “Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles,” Journal of Power Sources 196(16):6841-6846, 2011, doi:10.1016/j.jpowsour.2010.09.103.
  6. Barré, A., Deguilhem, B., Grolleau, S., Gérard, M. et al., “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” Journal of Power Sources 241:680-689, 2013, doi:10.1016/j.jpowsour.2013.05.040.
  7. Ford Design Institute, “Ford FMEA Handbook (With Robustness Linkages) Version 4.1,” 2004.
  8. Herb, F., “Alterungsmechanismen in Lithium-Ionen-Batterien und PEM-Brennstoffzellen und deren Einfluss auf die Eigenschaften von daraus bestehenden Hybrid-Systemen,” Dissertation, Universität Ulm, 2010.
  9. Meissner, E. and Richter, G., “The challenge to the automotive battery industry: the battery has to become an increasingly integrated component within the vehicle electric power system,” Journal of Power Sources 144(2):438-460, 2005, doi:10.1016/j.jpowsour.2004.10.031.
  10. Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P. et al., “Main aging mechanisms in Li ion batteries,” Journal of Power Sources 146(1-2):90-96, 2005, doi:10.1016/j.jpowsour.2005.03.172.
  11. Omar, N., Monem, M.A., Firouz, Y., Salminen, J. et al., “Lithium iron phosphate based battery - Assessment of the aging parameters and development of cycle life model,” Applied Energy(113):1575-1585, 2013, doi:10.1016/j.apenergy.2013.09.003.
  12. Fleckenstein, M., Bohlen, O., and Bäker, B. (eds.), “Aging Effect of Temperature Gradients in Li-ion Cells,” Electric Vehicle Symposium 26, Los Angeles, 2012.
  13. Cai, L., Dai, Y., Nicholson, M., White, R.E. et al., “Life modeling of a lithium ion cell with a spinel-based cathode,” Journal of Power Sources 221:191-200, 2013, doi:10.1016/j.jpowsour.2012.08.046.
  14. 11. Braunschweiger Symposium Hybrid und Electric Vehicles, HEV_2014_Proceedings (ed.), “Becker - Impact of low Temperatures on Performance and Aging of Lithium Batteries and Stregies for Heating,”
  15. Marongiu, A., Roscher, M., and Sauer, D.U., “Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles,” Applied Energy, 2014, doi:10.1016/j.apenergy.2014.06.063.
  16. Schmalstieg, J., Käbitz, S., Ecker, M., and Sauer, D.U., “A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries,” Journal of Power Sources 257:325-334, 2014, doi:10.1016/j.jpowsour.2014.02.012.
  17. Wang, J., Liu, P., Hicks-Garner, J., Sherman, E. et al., “Cycle-life model for graphite-LiFePO4 cells,” Journal of Power Sources 196(8):3942-3948, 2011, doi:10.1016/j.jpowsour.2010.11.134.
  18. Ecker, M., Gerschler, J.B., Käbitz, S., Hust, F. et al. (eds.), “Analyzing Calendar Aging Data towards a Lifetime Prediction Model for Lithium-Ion Batteries,” Electric Vehicles Symposium 26, Los Angeles, 2012.
  19. Hoff, C. and Sirch, O., “Elektrik, Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement IV: Mit 57 Tabellen,” Fachbuch / Haus der Technik, Vol. 130, expert-Verl, Renningen, ISBN 978-3-8169-3213-0, 2013.
  20. AL JED, H., MIEZE, A., VINESSA, J.-M., and SIMON, R., “Mathematical modeling of aging factors for Li-ion battery cells, IEEE Vehicle Power and Propulsion Conference (VPPC), 2010: 1 - 3 Sept. 2010, Lille, France,” IEEE, Piscataway, NJ, ISBN 978-1-4244-8220-7, 2010.
  21. VDA-initiative energy storage system for HEV, “Test Specification For Li-Ion Battery Systems for Hybrid Electric Electric Vehicles,” 2007:1-45.
  22. Chen, M. and Rincon-Mora, G.A., “Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance,” IEEE Trans. On energy Conversion 21(2):504-511, 2006, doi:10.1109/TEC.2006.874229.
  23. Andre, D., Appel, C., Soczka-Guth, T., and Sauer, D.U., “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” Journal of Power Sources 224:20-27, 2013, doi:10.1016/j.jpowsour.2012.10.001.
  24. Rosca, B., Kessels, J., Bergveld, H., and van den Bosch, P., “On-line Parameter, State-of-Charge and Aging Estimation of Li-ion Batteries,” 2012.
  25. Rezvanizaniani, S.M., Liu, Z., Chen, Y., and Lee, J., “Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility,” Journal of Power Sources 256:110-124, 2014, doi:10.1016/j.jpowsour.2014.01.085.
  26. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. et al., “Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods,” Journal of Power Sources 239:680-688, 2013, doi:10.1016/j.jpowsour.2012.11.146.
  27. Hentunen, A., Lehmuspelto, T., and Suomela, J. (eds.), “Parameterization of Electrical Battery Model for Use in Dynamic Simulations of Electric Vehicles,” Electric Vehicle Symposium 26, Los Angeles, 2012.
  28. Barré, A., Suard, F., Gérard, M., Montaru, M. et al., “Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use,” Journal of Power Sources 245:846-856, 2014, doi:10.1016/j.jpowsour.2013.07.052.
  29. Eom, S.-W., Kim, M.-K., Kim, I.-J., Moon, S.-I. et al., “Life prediction and reliability assessment of lithium secondary batteries,” Journal of Power Sources 174(2):954-958, 2007, doi:10.1016/j.jpowsour.2007.06.208.
  30. Takei, K., Kumai, K., Kobayashi, Y., Miyashiro, H. et al., “Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test,” Journal of Power Sources 97-98:697-701, 2001, doi:10.1016/S0378-7753(01)00646-2.
  31. Thomas, E.V., Bloom, I., Christophersen, J.P., and Battaglia, V.S., “Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing,” Journal of Power Sources 184(1):312-317, 2008, doi:10.1016/j.jpowsour.2008.06.017.

Cited By