This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

Journal Article
2014-01-2576
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 13, 2014 by SAE International in United States
Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms
Sector:
Citation: Poon, H., Ng, H., Gan, S., Pang, K. et al., "Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms," SAE Int. J. Fuels Lubr. 7(3):653-662, 2014, https://doi.org/10.4271/2014-01-2576.
Language: English

References

  1. Westbrook , C.K. , Pitz , W.J. , Herbinet , O. , Curran , H.J. et al. A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons from n-Octane to n-Hexadecane Combustion and flame 156 1 181 199 2009
  2. Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. A Comprehensive Modeling Study of n-Heptane Oxidation Combustion and Flame 114 149 177 1998
  3. Naik , C. , Puduppakkam , K. , Meeks , E. , and Liang , L. , Ignition Quality Tester Guided Improvements to Reaction Mechanisms for n-Alkanes: n-Heptane to n-Hexadecane SAE Technical Paper 2012-01-0149 2012 10.4271/2012-01-0149
  4. Siebers , D. , Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization SAE Technical Paper 1999-01-0528 1999 10.4271/1999-01-0528
  5. Siebers , D. , Liquid-Phase Fuel Penetration in Diesel Sprays SAE Technical Paper 980809 1998 10.4271/980809
  6. Guthrie , J. , Fowler , P. and Sabourin , R. , Gasoline and Diesel Fuel Survey 2003
  7. Grumman , N. , Diesel Fuel Oils, 2003 Report NGMS- 232 PPS 2004
  8. Farrell , J. , Cernansky , N. , Dryer , F. , Law , C. et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels SAE Technical Paper 2007-01-0201 2007 10.4271/2007-01-0201
  9. Poon , H. , Ng , H. , Gan , S. , Pang , K. et al. Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates SAE Int. J. Fuels Lubr. 6 3 729 744 2013 10.4271/2013-01-2630
  10. Pepiot , P. and Pitsch , H. , Systematic Reduction of Large Chemical Mechanisms the 4th joint meeting of the U.S. Sections of the Combustion Institute 2005
  11. Cormen , T.H. , Leiserson , C.E. , Rivest , R.L. and Stein , C. , Introduction to Algorithms 2nd Cambridge, MA MIT Press 2001
  12. Dijkstra , E.W. A Note on Two Problems in Connexion with Graphs Numerical mathematics 1 269 271 1959
  13. Pepiot , P. and Pitsch , H. , An Automatic Chemical Lumping Method for the Reduction of Large Chemical Kinetic Mechanisms Combustion theory and modeling 12 6 1089 1108 2008
  14. Ahmed , S.S. , Mauß , F. , Moréac , G. and Zeuch , T. , A Comprehensive and Compact n-Heptane Oxidation Model Derived Using Chemical Lumping Advanced article 2007 10.1039/b614712g
  15. Lu , T. and Law , C.K. Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane Combustion and flame 154 153 163 2008
  16. Brakora , J. , Ra , Y. , and Reitz , R. , Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties SAE Int. J. Engines 4 1 931 947 2011 10.4271/2011-01-0831
  17. Lu , T. and Law , C.K. A Directed Relation Graph Method for Mechanism Reduction Proceedings of the Combustion Institute 30 1 1333 1341 2005
  18. Lu , T. and Law , C.K. Linear Time Reduction of Large Kinetic Mechanisms with Directed Relation Graph: n-Heptane and iso-Octane Combustion and flame 144 24 36 2006
  19. Niemeyer , K.E. , Sung , C. and Raju , M.P. Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis Combustion and flame 157 9 1760 1770 2010
  20. Yang , J. , Johansson , M. , Naik , C. , Puduppakkam , K. et al. 3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism SAE Technical Paper 2012-01-0151 2012 10.4271/2012-01-0151
  21. Luo , Z. , Plomer , M. , Lu , T. , Som , S. et al. A Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Fuel 99 143 153 2012
  22. Combustion Vessel Geometry: 2009 to Present, “Cross-optical, cube-shaped vessel Engine Combustion Network, http://www.sandia.gov/ecn/cvdata/sandiaCV/vesselGeometry-2009.php May 10 2012
  23. Kook , S. and Pickett , L.M. Liquid Length and Vapor Penetration of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel Sprays at High-Temperature and High-Pressure Ambient Conditions Fuel 93 539 548 2012
  24. Kook , S. and Pickett , L. , Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions SAE Int. J. Fuels Lubr. 5 2 647 664 2012 10.4271/2012-01-0678
  25. Engine Combustion Network Experimental Data Archive, http://www.sandia.gov/ecn/
  26. Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/ Rayleigh-Taylor Hybrid Model Atomization and sprays 9 623 650 1999
  27. Launder , B. E. and Sharma , B. I. Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc Letters in Heat and Mass Transfer 1 2 131 138 1974
  28. Kösters , A. and Karlsson , A. , A Comprehensive Numerical Study of Diesel Fuel Spray Formation with OpenFOAM SAE Technical Paper 2011-01-0842 2011 10.4271/2011-01-0842

Cited By