This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

Journal Article
2014-01-2449
ISSN: 1946-391X, e-ISSN: 1946-3928
Published September 30, 2014 by SAE International in United States
Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts
Citation: William, Y., Oraby, W., and Metwally, S., "Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts," SAE Int. J. Commer. Veh. 7(2):666-674, 2014, https://doi.org/10.4271/2014-01-2449.
Language: English

Abstract:

This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations.
Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR). Results showed that in case of 25 m/s wind gust [which corresponds to 45° wind relative yaw angle (βw)], the vehicle Lateral Deviation (LD) maintained about 5 m after 4.5 seconds of entering the wind gust. Moreover, vehicle Yaw Rate (YR) reaches a maximum value of about 2.3deg/s during such maneuver simulation time.