This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of a Modified CFR Engine for the Octane Rating of Liquefied Petroleum Gases (LPG)

Journal Article
2014-01-1474
ISSN: 1946-3952, e-ISSN: 1946-3960
Published April 01, 2014 by SAE International in United States
Design and Analysis of a Modified CFR Engine for the Octane Rating of Liquefied Petroleum Gases (LPG)
Sector:
Citation: Morganti, K., Foong, T., Brear, M., Da Silva, G. et al., "Design and Analysis of a Modified CFR Engine for the Octane Rating of Liquefied Petroleum Gases (LPG)," SAE Int. J. Fuels Lubr. 7(1):283-300, 2014, https://doi.org/10.4271/2014-01-1474.
Language: English

References

  1. Oh , S. , Lee , S. , Choi , Y. , Kang , K. et al. Combustion and Emission Characteristics in a Direct Injection LPG/Gasoline Spark Ignition Engine SAE Technical Paper 2010-01-1461 2010 10.4271/2010-01-1461
  2. Muthu Shanmugam , R. , Kankariya , N. , Honvault , J. , Srinivasan , L. et al. Performance and Emission Characterization of 1.2L MPI Engine with Multiple Fuels (E10, LPG and CNG) SAE Int. J. Fuels Lubr. 3 1 334 352 2010 10.4271/2010-01-0740
  3. Mizushima , N. , Sato , S. , Ogawa , Y. , Yamamoto , T. et al. Combustion Characteristics and Performance Increase of an LPG-SI Engine with Liquid Fuel Injection System SAE Technical Paper 2009-01-2785 2009 10.4271/2009-01-2785
  4. Pecqueur , M. , Ceustermans , K. , Huyskens , P. , and Sawidis , D. Emissions Generated from a Suzuki Liane Running on Unleaded Gasoline and LPG under the Same Load Conditions SAE Technical Paper 2008-01-2637 2008 10.4271/2008-01-2637
  5. United States Energy Information Administration Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/studies/worldshalegas Jun. 2013
  6. United States Geological Survey National Assessment of Oil and Gas Fact Sheet http://pubs.usgs.gov/fs/2013/3013/fs2013-3013.pdf Apr. 2013
  7. Braziel , R. Impact of shale liquids on regional propane supply https://www.npga.org/files/public/Recent_Developments_In_International_Supply_and%20Demand_of_Propane.ppt Jan. 2012
  8. Gist , R. Developments in international supply and demand of propane https://www.npga.orq/files/public/Recent_Developments_I n_International_Supply_and%20Demand_of_Propane.ppt Jan. 2012
  9. Hart , W.M. Impact of shale gas development on NGL supplies and petrochemical feedstocks http://sts.aiche.org/webfm_send/323 Feb. 2012
  10. True , W.R. Global LPG supply growth responding to high oil prices Oil Gas J. 110 3b 23 2012
  11. United States Energy Information Administration Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays http://www.eia.gov/analysis/studies/usshalegas/pdf/usshaleplays.pdf Jul. 2011
  12. United States Energy Information Administration World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States http://www.advres.com/pdf/ARI%20EIA%20Intl%20Gas%20Shale%20APR%202011.pdf Apr. 2011
  13. ASTM International Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel ASTM Standard D2699 2012
  14. ASTM International Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel ASTM Standard D2700 2012
  15. ASTM International Standard Test Method for Knock Characteristics of Liquefied Petroleum (LP) Gases by the Motor (LP) Method ASTM Standard D2623 1986
  16. ASTM International Standard Specification for Liquefied Petroleum (LP) Gases ASTM Standard D1835 2011
  17. Falkiner , R.J. Liquefied Petroleum Gas Fuels and Lubricants Handbook 31 59 ASTM International Pennsylvania 9780803120969 2003
  18. Morganti , K.J. , Foong , T.M. , Brear , M.J. , da Silva , G. et al. The Research and Motor octane numbers of Liquefied Petroleum Gas (LPG) Fuel 108 797 811 2013 10.1016/j.fuel.2013.01.072
  19. European Committee for Standardisation Automotive fuels- LPG- Requirements and test methods Standard EN 589 2008
  20. ASTM International Standard Practice for Calculation of Certain Physical Properties of Liquefied Petroleum (LP) Gases from Compositional Analysis ASTM Standard D2598 2011
  21. Mittal , V. and Heywood , J. The Shift in Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines Over the Last 70 Years SAE Int. J. Engines 2 2 1 10 2009 10.4271/2009-01-2622
  22. Mittal , V. and Heywood , J. The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines SAE Technical Paper 2008-01-2414 2008 10.4271/2008-01-2414
  23. Kalghatgi , G. Fuel Anti-Knock Quality - Part I. Engine Studies SAE Technical Paper 2001-01-3584 2001 10.4271/2001-01-3584
  24. Kalghatgi , G. Fuel Anti-Knock Quality- Part II. Vehicle Studies - How Relevant is Motor Octane Number (MON) in Modern Engines? SAE Technical Paper 2001-01-3585 2001 10.4271/2001-01-3585
  25. Foong , T.M. , Morganti , K.J. , Brear , M.J. , da Silva , G. et al. The octane numbers of ethanol blended with gasoline and its surrogates Fuel 115 727 739 2014 10.1016/j.fuel.2013.07.105
  26. Heywood , J.B. Internal Combustion Engine Fundamentals McGraw-Hill Science Engineering New York 0-07-028637-X 1988
  27. Morganti , K.J. , Foong , T.M. , Brear , M.J. , da Silva , G. et al. The Autoignition of Propane and n-Butane during Octane Rating: Engine Experiments and Detailed Chemical Kinetic Modelling the Australian Combustion Symposium Nov. 6 8 2013
  28. Morganti , K.J. A Study of the Knock Limits of Liquefied Petroleum Gas (LPG) in Spark-Ignition Engines Ph.D. thesis Mechanical Engineering Department, The University of Melbourne Melbourne 2013
  29. Bradley , D. , and Morley , C. Autoignition in spark-ignition engines Comprehensive Chemical Kinetics 35 661 760 Elsevier Science The Netherlands 978-0-444-82485-1 1997
  30. Ellison , R.J. , Harrow , G.A. , and Hayward , B.M. The Effect of Tetraethyl-Lead on Flame Propagation and Cyclic Dispersion in Spark-Ignition Engines J. Inst. of Petroleum 54 537 243 250 1968
  31. Downs , D. , Walsh , A.D. , and Wheeler , R.W. A Study of the Reactions that Lead to ‘Knock’ in the Spark-Ignition Engine Phil. Trans. R. Soc. Lond. A 243 870 463 524 1951 10.1098/rsta.1951.0009
  32. Puckett , A.D. Knock Ratings of Gasoline Substitutes J. Res. Natl. Bur. Stand. 35 4 273 284 1945
  33. American Petroleum Institute Knocking Characteristics of Pure Hydrocarbons API Research Project 45 1958
  34. Clifford , E.A. Practical Guide to LP-Gas Utilization Harbrace Publications Minnesota 1969
  35. Boldt , K. Motor (LP) Knock Test Method Development SAE Technical Paper 670055 1967 10.4271/670055
  36. Morganti , K.J. , Foong , T.M. , Brear , M.J. , da Silva , G. et al. A Comparison of Reference Engine Autoignition with Detailed Kinetic Modelling for a range of Primary Reference Fuels the Australian Combustion Symposium Nov. 29 Dec. 1 2011
  37. Swarts , A. Insights relating to octane rating and the underlying role of autoignition Ph.D. thesis Mechanical Engineering Department, The University of Cape Town Cape Town 2006
  38. Cornell , J.A. Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data Wiley New Jersey 0471393673 2002
  39. Montgomery , D.C. Design and Analysis of Experiments Wiley New Jersey 1118146921 2012
  40. Tribbett , E. , Froehlich , E. , and Bayer , L. Effects of Ignition Timing, Equivalence Ratio and Compression Ratio on RDH Engine Performance Mechanical Engineering Department, Stanford University California 2010
  41. Foong , T. , Morganti , K. , Brear , M. , da Silva , G. et al. The Effect of Charge Cooling on the RON of Ethanol/Gasoline Blends SAE Int. J. Fuels Lubr. 6 1 34 43 2013 10.4271/2013-01-0886
  42. Hilliard , J. and Wheeler , R. Nitrogen Dioxide in Engine Exhaust SAE Technical Paper 790691 1979 10.4271/790691
  43. Sakai , Y. , Miyazaki , H. , and Mukai , K. The Effect of Combustion Chamber Shape on Nitrogen Oxides SAE Technical Paper 730154 1973
  44. Quader , A. Effects of Spark Location and Combustion Duration on Nitric Oxide and Hydrocarbon Emissions SAE Technical Paper 730153 1973 10.4271/730153
  45. Benson , J. and Stebar , R. Effects of Charge Dilution on Nitric Oxide Emission from a Single-Cylinder Engine SAE Technical Paper 710008 1971 10.4271/710008
  46. Nebel , G.J. , and Jackson , M.W. Some Factors Affecting the Concentration of Oxides of Nitrogen in Exhaust Gases from Spark Ignition Engines JAPCA J. Air Waste Ma. 8 3 213 219 1958 10.1080/00966665.1958.10467847
  47. Hanson , T.K. , and Egerton , A.C. Nitrogen Oxides in Internal Combustion Engine Gases Proc. Roy Soc. A. 163 912 90 100 1937 10.1098/rspa.1937.0212
  48. Kaiser , E.W. , Rothschild , W.G. , and Lavoie , G.A. Storage and Partial Oxidation of Unburned Hydrocarbons in Spark-Ignited Engines - Effect of Compression Ratio and Spark Timing Combust. Sci. Tech. 36 3-4 171 189 1984 10.1080/00102208408923732
  49. Turns , S.R. An introduction to combustion: concepts and applications McGraw-Hill Science Engineering UK 0072300965 2000
  50. Lambert , N.M.M. An Experimental Study of Exhaust Hydrocarbon Emissions from a Spark Ignition Engine Master's thesis Mechanical Engineering Department, Loughborough University of Technology Loughborough 1984
  51. Stivender , D. Development of a Fuel-Based Mass Emission Measurement Procedure SAE Technical Paper 710604 1971 10.4271/710604
  52. D'Alleva , B. and Lovell , W. Relation of Exhaust Gas Composition to Air-Fuel Ratio SAE Technical Paper 360106 1936 10.4271/360106
  53. Gamma Technologies Inc. GT-Suite (Version 7.3), Computer Software Westmont, IL 2012
  54. Vancoillie , J. Ghent University personal communication Mar. 2013
  55. Leppard , W. The Chemical Origin of Fuel Octane Sensitivity SAE Technical Paper 902137 1990 10.4271/902137
  56. Johnson , J. , Myers , P. , and Uyehara , O. End-Gas Temperatures, Pressures, Reaction Rates, and Knock SAE Technical Paper 650505 1965 10.4271/650505
  57. Gamma Technologies Inc. GT-Suite Flow Theory Manual 2012
  58. Caton , J.A. , and Heywood , J.B. An Experimental and Analytical Study of Heat Transfer in an Engine Exhaust Port Int. J. Heat Mass Transfer 24 4 581 595 1981 10.1016/0017-9310(81)90003-X
  59. Danis , L. Engine Valve Cooling SAE Technical Paper 730055 1973 10.4271/730055
  60. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 10.4271/670931
  61. Imming , H.S. The Effect of Piston-Head Temperature on Knock-Limited Power Report No. NACA-WR-E-35 Glenn Research Center Ohio 1944
  62. Wittmann , N.O. , and Smith , J.H. Piston temperature measurement and piston design investigation on a C.F.R. engine Mechanical Engineering Department, Massachusetts Institute of Technology Massachusetts http://hdl.handle.net/10945/6510 1946
  63. Marr , M.A. , Wallace , J.S. , Chandra , S. , Pershin , L. et al. A fast response thermocouple for internal combustion engine surface temperature measurements Exp. Therm. Fluid Sci. 34 183 189 2010 10.1016/i.expthermflusci.2009.10.008
  64. Demuynck , J. , Raes , N. , Zuliani , M. , De Paepe , M. et al. Local heat flux measurements in a hydrogen and methane spark ignition engine with a thermopile sensor Int. J. Hydrogen Energ. 34 9857 9868 2009 10.1016/j.ijhydene.2009.10.035
  65. Nishiwaki , K. Modeling Engine Heat Transfer and Flame-Wall Interaction 4th International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA) Japan Jul. 20 23 1998
  66. Lyford-Pike , E.J. , and Heywood , J.B. Thermal boundary layer thickness in the cylinder of a spark-ignition engine Int. J. Heat Mass Transfer 27 10 1873 1878 1984 10.1016/0017-9310(84)90169-8
  67. Deslandes , G. The motored engine autoignition of hydrogen and methane Ph.D. thesis Mechanical Engineering Department, The University of Melbourne Melbourne 1975
  68. Irimescu , A. Convective heat transfer equation for turbulent flow in tubes applied to internal combustion engines operated under motored conditions Appl. Therm. Eng. 50 1 536 545 2013 10.1016/j.applthermaleng.2012.06.051
  69. Hamada , K.I. , Noor , M.M. , Kadirgama , K. , and Bakar , R.A. Effect of intake conditions on heat transfer characteristics for port injection hydrogen fueled engine 2nd International Conference on Mechanical and Electrical Technology (ICMET) Singapore Sep. 10 12 2010 10.1109/ICMET.2010.5598419
  70. Soyhan , H.S. , Yasar , H. , Walmsley , H. , Head , B. et al. Evaluation of heat transfer correlations for HCCI engine modeling Appl. Therm. Eng. 29 2-3 541 549 2009 10.1016/j.applthermaleng.2008.03.014
  71. Chang , J. , Guralp , O. , Filipi , Z. , Assanis , D. et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux SAE Technical Paper 2004-01-2996 2004 10.4271/2004-01-2996
  72. Borman , G. , and Nishiwaki , K. Internal-combustion engine heat transfer Prog. Energ. Combust. 13 1 1 46 1987 10.1016/0360-1285(87)90005-0
  73. Rauckis , M.J. , and McLean , W.J. The Effect of Hydrogen Addition on Ignition Delays and Flame Propagation in Spark Ignition Engines Combust. Sci. Tech. 19 5-6 207 216 1979 10.1080/00102207908946881
  74. Tzanetakis , T. , Singh , P. , Chen , J. and Thomson , M.J. Knock limit prediction via multi-zone modelling of a primary reference fuel HCCI engine Int. J. Vehicle Design 54 1 47 72 2010 10.1504/IJVD.2010.034870
  75. Alkidas , A.C. Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions Prog. Energy Combust. Sci. 25 3 253 273 1999 10.1016/S0360-1285(98)00026-4
  76. Blin-Simiand , N. , Rigny , R. , Viossat , V. , Circan , S. et al Autoignition of Hydrocarbon/Air Mixtures in a CFR Engine: Experimental and Modeling Study Combust. Sci. Tech. 88 5-6 329 348 1993 10.1080/00102209308947243
  77. Galliot , F. , Cheng , W. , Cheng , C. , Sztenderowicz , M. et al. In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine SAE Technical Paper 900485 1990 10.4271/900485
  78. Taylor , C.F. The Internal Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design MIT Press Massachusetts 9780262700276 1985
  79. Bechtold , J.K. , and Matalon , M. The dependence of the Markstein length on stoichiometry Combust. Flame 127 1-2 1906 1913 2001 10.1016/S0010-2180(01)00297-8
  80. Davis , S.G. , and Law , C.K. Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons Combust. Sci. Tech. 140 1-6 427 449 1998 10.1080/00102209808915781
  81. Metghalchi , M. , and Keck , J.C. Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure Combust. Flame 38 143 154 1980 10.1016/0010-2180(80)90046-2
  82. Razus , D. , Brinzea , V. , Mitu , M. , and Oancea , D. Burning Velocity of Liquefied Petroleum Gas (LPG)-Air Mixtures in the Presence of Exhaust Gas Energ. Fuel 24 3 1487 1494 2010 10.1021/ef901209g
  83. Razus , D. , Brinzea , V. , Mitu , M. , Movileanu , C. et al Inerting effect of the combustion products on the confined deflagration of liquefied petroleum gas-air mixtures J. Loss. Prevnt. Proc. 22 4 463 468 2009 10.1016/j.jlp.2009.03.002
  84. Lindström , F. , Ångström , H. , Kalghatgi , G. , and Möller , C. An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations SAE Technical Paper 2005-01-2106 2005 10.4271/2005-01-2106
  85. Glassman , I. , and Yetter , R.A. Combustion Academic Press Massachusetts 978-0-12-088573-2 2008

Cited By