Investigation of Cylinder Deactivation and Variable Valve Actuation on Gasoline Engine Performance

2014-01-1170

04/01/2014

Event
SAE 2014 World Congress & Exhibition
Authors Abstract
Content
Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine speeds by changing valve opening and closing times as well as maximum valve lift. The focus of this study was the investigation of effect of the integration of the above two technologies on the performance of a gasoline engine operating at part load conditions.
In this study, a 1.6 Litre in-line 4-cylinder gasoline engine is modelled on engine simulation software and simulated data is analysed to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emissions. A CDA and VVA operating window is identified which yields brake specific fuel consumption improvements of 10-20% against the base engine at engine speeds between 1000rpm to 3500rpm at approximately 12.5% load. Highest concentration of CO emissions was observed at between 4 to 5 bar BMEP at 4000rpm and highest concentration of NOx at the same load range but at 1000rpm.Findings based on simulation results point towards significant part load performance improvements which can be achieved by integrating cylinder deactivation and variable valve actuation on gasoline engines.
Meta TagsDetails
DOI
https://doi.org/10.4271/2014-01-1170
Pages
9
Citation
Kuruppu, C., Pesiridis, A., and Rajoo, S., "Investigation of Cylinder Deactivation and Variable Valve Actuation on Gasoline Engine Performance," SAE Technical Paper 2014-01-1170, 2014, https://doi.org/10.4271/2014-01-1170.
Additional Details
Publisher
Published
Apr 1, 2014
Product Code
2014-01-1170
Content Type
Technical Paper
Language
English