This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming

Journal Article
2014-01-1101
ISSN: 1946-3936, e-ISSN: 1946-3944
Published April 01, 2014 by SAE International in United States
Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming
Sector:
Citation: Poran, A., Artoul, M., Sheintuch, M., and Tartakovsky, L., "Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming," SAE Int. J. Engines 7(1):234-242, 2014, https://doi.org/10.4271/2014-01-1101.
Language: English

References

  1. International Energy Agency World energy outlook 2011 OECD/IEA Paris, France 9 November 2011
  2. Chakravarthy VK , Daw CS , Pihl JA. , Conklin JC Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines Energy Fuels 2010 1529 1537
  3. Petterson , L. Sjostrom , K. Decomposed Methanol as a Fuel-A review Combust, Sci. and Tech. 1991 265 303
  4. Finegold , Joseph G. Dissociated Methanol Vehicle Test Results Inst of Gas Technology 1984
  5. Sakai , T. , Yamaguchi , I. , Asano , M. , Ayusawa , T. et al. Transient Performance Development on Dissociated Methanol Fueled Passenger Car 1987
  6. Brinkman , N. and Stebar , R. A Comparison of Methanol and Dissociated Methanol Illustrating Effects of Fuel Properties on Engine Efficiency-Experiments and Thermodynamic Analyses 850217 1985 10.4271/850217
  7. Morgenstern D.A. , Fornango J.P Low-Temperature Reforming of Ethanol over Copper-Plated Raney Nickel: A New Route to Sustainable Hydrogen for Transportation Energy and Fuels 19 2005 1708 16
  8. Morgenstern , D. , Wheeler , J. , and Stein , R. High Efficiency, Low Feedgas NOx, and Improved Cold Start Enabled by Low-Temperature Ethanol Reforming SAE Int. J. Engines 3 1 529 545 2010 10.4271/2010-01-0621
  9. Sall , E.D. Morgenstern , D.A. Fornango , J.P. Taylor , J.W. et al. Reforming of Ethanol with Exhaust Heat at Automotive Scale Energy & Fuels 2013 27 9 5579 5588
  10. Hoffmann , W. , Wong , V. , Cheng , W. , and Morgenstern , D. A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol 2008-01-2415 2008 10.4271/2008-01-2415
  11. Tartakovsky , L. , Mosyak , A. and Zvirin , Y. Energy analysis of ethanol steam reforming for internal combustion engine Int. J. Energy Research 37 259 267 2013 10.1002/er.1908
  12. Tartakovsky , L. , Baibikov , V. , Gutman , M. , Mosyak , A. et al. Performance Analysis of SI Engine Fueled by Ethanol Steam Reforming Products 2011-01-1992 2011 10.4271/2011-01-1992
  13. Tartakovsky , L. , Baibikov , V. , and Veinblat , M. Comparative Performance Analysis of SI Engine Fed by Ethanol and Methanol Reforming Products 2013-01-2617 2013 10.4271/2013-01-2617
  14. Tesser , R. Di Serio , M. and Santacesaria , E. Methanol steam reforming: A comparison of different kinetics in the simulation of a packed bed reactor Chem. Eng. J. 154 1-3 69 75 2009
  15. Choi , Y. Stenger , H.G. Appl. Catal. B 38 2002 259
  16. Purnama , H. , Ressler T. , Jentoft R. E. , Soerijanto H. , Schlogl R. , and Schomacker R. CO formation/selectivity for Steam Reforming of Methanol with a Commercial CuO/ZnO/Al2O3 Catalyst Applied Catalysis A: General 259 1 2004 83 94
  17. Agrell , J. Birgersson , H. Boutonnet , M. Steam Reforming of Methanol Over a Cu/ZnO/Al2O3 Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation Elsevier 2002
  18. Agarwal , V. Patel , S. ; Pant , K. K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling Appl. Catalysis. A. 2005 155 279
  19. Santacesaria , E. CarrĂ¡ , S. Kinetics of catalytic steam reforming of methanol in a cstr reactor Applied Catalysis 5 3 345 358 1983
  20. Lee , J.K. Ko , J.B. Kim , D.H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor Applied Catalysis 278 2004 25 35
  21. Srinivasan A. and Depcik C. One-Dimensional Pseudo-Homogeneous Packed-Bed Reactor Modeling: I. Chemical Species Equation and Effective Diffusivity Chem. Eng. Technol. 36 1 22 32 2013
  22. Wakao , N. Kaguei , S. Heat and Mass Transfer in Packed Beds Topics in Chemical Engineering 1 Taylor & Francis New York 1982
  23. Nield , D.A. Bejan , A. Convection in Porous Media 3 Springer-Verlag New York 2006
  24. Younis , L. J. Inst. Energy 2006 79 4 222 227 10.1179/174602206X148874
  25. Finlayson , B. A. Chem. Eng. Sci. 1971 26 7 1081 1091 10.1016/0009-2509(71)80022-2
  26. Rosenhow , W.M. and Hertnett , J.P. handbook of heat transfer New York McGraw-Hill 1972
  27. Ribeiro , A.M. Neto , P. and Pinho , C. Mean Porosity and Pressure Drop Measurements In Packed Beds Of Monosized Spheres : Side Wall Effects International Review of Chemical Engineering 2 1 40 46 2010
  28. GT-Power Engine Simulation Software Gamma Technologies, Inc.
  29. Natarajan , J. , Lieuwen , T. and Seitzman , J. Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature and pressure Combustion & Flame 151 104 119 2007
  30. Qiao , L. Kim , C.H. Faeth , G.M. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames
  31. Aung , K. T. Hassan , M. I. Faeth , G. M. Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
  32. Heywood , J.B. Internal combustion engines fundamentals New York McGraw-Hill 1988

Cited By