This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam

Journal Article
2014-01-0539
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 01, 2014 by SAE International in United States
A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam
Sector:
Citation: Shivakumar, N., Deb, A., Chou, C., and Chittappa, H., "A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam," SAE Int. J. Mater. Manf. 7(3):514-519, 2014, https://doi.org/10.4271/2014-01-0539.
Language: English

Abstract:

Polymeric foams are known to be sensitive to strain rate under dynamic loads. Mechanical characterization of such materials would not thus be complete without capturing the effect of strain rate on their stress-strain behaviors. Consistent data on the dynamic behavior of foam is also necessary for designing energy-absorbing countermeasures based on foam such as for vehicle occupant safety protection. Strain rates of the order of 100-500 s−1 are quite common in such design applications; strain rates of this range cannot be obtained with an ordinary UTM (universal testing machine) and a special test set-up is usually needed. In the current study, a unique approach has been suggested according to which quasi-static tests at low strain rates and low velocity drop tests at medium strain rates are utilized to arrive at an empirical relation between initial peak stress and logarithm of strain rate for a rigid closed-cell PU foam. Using a stress-scaling methodology and the empirical relation mentioned, foam stress-strain curves are obtained for a number of strain rates spanning low (from 0.00033 s−1) to high strain rates (up to1000 s−1). This data on foam material behavior is expected to be particularly useful in numerical modelling of foam-based countermeasures for impact energy absorption applications.