This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Zero-Dimensional Spark Ignition Combustion Modeling - A Comparison of Different Approaches
Technical Paper
2013-24-0022
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Internal combustion engines development with increased complexity due to CO2 reduction and emissions regulation, while reducing costs and duration of development projects, makes numerical simulation essential. 1D engine simulation software response for the gas exchange process is sufficiently accurate and quick. However, combustion simulation by Wiebe function is poorly predictive.
The objective of this paper is to compare different approaches for 0D Spark Ignition (SI) modeling. Versions of Eddy Burn Up, Fractal and Flame Surface Density (FSD) models have been coded into GT-POWER platform, which connects thermodynamics, gas exchange and combustion sub-models. An initial flame kernel is imposed and then, the flame front propagates spherically in the combustion chamber. Flame surface is tabulated as a function of piston position and flame radius. The modeling of key features of SI combustion such as laminar flame speed and thickness and turbulence was common. This comparison focuses on the impact of turbulence on the flame front and shows the predictive capabilities of each approach.
Those three approaches have been evaluated against experimental data for several steady state operating points of a single-cylinder engine. Cylinder pressure is predicted satisfactorily. Burn rates are well predicted for the period of a freely propagating flame front, that is before flame-wall interaction occurs. The FSD model physically considers the impact of turbulence on the flame for various turbulence scales, unlike the other two models which demand more calibration parameters. It is shown that additional modeling must be incorporated so that the flame-wall interaction is taken into account.
Recommended Content
Authors
Topic
Citation
Demesoukas, S., Caillol, C., Higelin, P., and Boiarciuc, A., "Zero-Dimensional Spark Ignition Combustion Modeling - A Comparison of Different Approaches," SAE Technical Paper 2013-24-0022, 2013, https://doi.org/10.4271/2013-24-0022.Also In
References
- Verhelst S. and Sheppard C. G. W., “Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview,” Energy Conversion and Management, vol. 50, no. 5, pp. 1326-1335, May 2009, doi:10.1016/j.enconman.2009.01.002.
- Rakopoulos, C., Michos, C., and Giakoumis, E., “Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model,” SAE Int. J. Engines 2(1):880-910, 2009, doi:10.4271/2009-01-0931.
- Metghalchi M. and Keck J. C., “Laminar burning velocity of propane-air mixtures at high temperature and pressure,” Combustion and Flame, vol. 38, no. null, pp. 143-154, Jan. 1980, doi:10.1016/0010-2180(80)90046-2.
- Giansetti, P. and Higelin, P., “Residual Gas Fraction Measurement and Estimation in Spark Ignition Engine,” SAE Technical Paper 2007-01-1900, 2007, doi:10.4271/2007-01-1900.
- Fox, J., Cheng, W., and Heywood, J., “A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines,” SAE Technical Paper 931025, 1993, doi:10.4271/931025.
- Giansetti, P., Perrier, C., Higelin, P., Chamaillard, Y. et al., “A Model for Residual Gas Fraction Prediction in Spark Ignition Engines,” SAE Technical Paper 2002-01-1735, 2002, doi:10.4271/2002-01-1735.
- Grill, M., Billinger, T., and Bargende, M., “Quasi-Dimensional Modeling of Spark Ignition Engine Combustion with Variable Valve Train,” SAE Technical Paper 2006-01-1107, 2006, doi:10.4271/2006-01-1107.
- Boiarciuc, A. and Floch, A., “Evaluation of a 0D Phenomenological SI Combustion Model,” SAE Technical Paper 2011-01-1894, 2011, doi:10.4271/2011-01-1894.
- Rivas, M., Higelin, P., Caillol, C., Sename, O. et al., “Validation and Application of a New 0D Flame/Wall Interaction Sub Model for SI Engines,” SAE Int. J. Engines 5(3):718-733, 2012, doi:10.4271/2011-01-1893.
- Bozza, F., Gimelli, A., Merola, S., and Vaglieco, B., “Validation of a Fractal Combustion Model through Flame Imaging,” SAE Technical Paper 2005-01-1120, 2005, doi:10.4271/2005-01-1120.
- Heywood J., Internal Combustion Engine Fundamentals. McGraw-Hill Science/Engineering/Math, 1988, p. 930.
- Hattrell, T., Sheppard, C., Burluka, A., Neumeister, J. et al., “Burn Rate Implications of Alternative Knock Reduction Strategies for Turbocharged SI Engines,” SAE Technical Paper 2006-01-1110, 2006, doi:10.4271/2006-01-1110.
- Zimont V. L., “Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers,” Combustion, Explosion, and Shock Waves, vol. 15, no. 3, pp. 305-311, 1979, doi:10.1007/BF00785062.
- Poinsot T. and Veynante D., Theoretical and Numerical Combustion 3rd Edition. 2012.
- Driscoll J., “Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities,” Progress in Energy and Combustion Science, vol. 34, no. 1, pp. 91-134, Feb. 2008, doi:10.1016/j.pecs.2007.04.002.
- Bozza, F., Gimelli, A., Strazzullo, L., Torella, E. et al., “Steady-State and Transient Operation Simulation of a “Downsized” Turbocharged SI Engine,” SAE Technical Paper 2007-01-0381, 2007, doi:10.4271/2007-01-0381.
- Bozza, F., Fontana, G., Galloni, E., and Torella, E., “3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine,” SAE Technical Paper 2007-24-0029, 2007, doi:10.4271/2007-24-0029.
- Richard S., Bougrine S., Font G., Lafossas F. -a., and Berr F. Le, “On the Reduction of a 3D CFD Combustion Model to Build a Physical 0D Model for Simulating Heat Release, Knock and Pollutants in SI Engines,” Oil & Gas Science and Technology - Revue de l'IFP, vol. 64, no. 3, pp. 223-242, Jun. 2009, doi:10.2516/ogst/2008055.
- Bougrine, S., Richard, S., and Veynante, D., “Modelling and Simulation of the Combustion of Ethanol blended Fuels in a SI Engine using a 0D Coherent Flame Model,” SAE Technical Paper 2009-24-0016, 2009, doi:10.4271/2009-24-0016.
- Weller H. G., “The Development of a New Flame Area Combustion Model Using Conditional Averaging,” 1993.
- Weller H. G., Tabor G., Gosman a. D., and Fureby C., “Application of a flame-wrinkling les combustion model to a turbulent mixing layer,” Symposium (International) on Combustion, vol. 27, no. 1, pp. 899-907, Jan. 1998, doi:10.1016/S0082-0784(98)80487-6.
- Weller H. G., Uslu S., Gosman A. D., Maly R. R., Herweg R., and Heel B., “Prediction of Combustion in Homogeneous-Charge Spark-Ignition Engines,” in COMODIA, 1994.
- Bougrine S., “0-Dimensional Modeling of the Combustion of Alternative Fuels in Spark Ignition Engines,” Ecole Centrale Paris, 2012.
- Poinsot T. and Meneveau C., “Stretching and Quenching of Flamelets in Premixed Turbulent Combustion,” Combustion and Flame, vol. 86, pp. 311-332, 1991, doi:10.1016/0010-2180(91)90126-V.
- Charlette F., Meneveau C., and Veynante D., “A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation,” Combustion and Flame, vol. 131, no. 1-2, pp. 181-197, Oct. 2002, doi:10.1016/S0010-2180(02)00401-7.
- Charlette F., Meneveau C., and Veynante D., “A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests,” Combustion and Flame, vol. 131, no. 1-2, pp. 159-180, Oct. 2002, doi:10.1016/S0010-2180(02)00400-5.
- Fichot F., Lacas F., Veynante D., and Candel S., “One-Dimensional Propagation of a Premixed Turbulent Flame With a Balance Equation for the Flame Surface Density,” Combustion Science and Technology, vol. 90, no. 1-4, pp. 35-60, Apr. 1993, doi:10.1080/00102209308907602.
- Duclos J., Veynante D., and Poinsot T., “A comparison of flamelet models for premixed turbulent combustion,” Combustion and Flame, vol. 95, no. 1-2, pp. 101-117, Oct. 1993, doi:10.1016/0010-2180(93)90055-8.
- Hakberg B. and Gosman A. D., “Analytical determination of turbulent flame speed from combustion models,” Symposium (International) on Combustion, vol. 20, no. 1, pp. 225-232, Jan. 1985, doi:10.1016/S0082-0784(85)80507-5.
- Heywood J. B., “Combustion and its Modeling in Spark-Ignition Engines,” in COMODIA, 1994.
- Herweg, R. and Maly, R., “A Fundamental Model for Flame Kernel Formation in S. I. Engines,” SAE Technical Paper 922243, 1992, doi:10.4271/922243.
- Blint R. J., “Flammability limits for exhaust gas diluted flames,” Symposium (International) on Combustion, vol. 22, no. 1, pp. 1547-1554, Jan. 1989, doi:10.1016/S0082-0784(89)80165-1.
- Bradley D., Lawes M., and Mansour M. S., “Flame surface densities during spherical turbulent flame explosions,” Proceedings of the Combustion Institute, vol. 32, no. 1, pp. 1587-1593, Jan. 2009, doi:10.1016/j.proci.2008.06.020.
- Chaudhuri S., Wu F., Zhu D., and Law C. K., “Turbulent Flame Speed and Self-Similar Propagation of Expanding Premixed Flames,” Fall Technical Meeting of the Eastern States Section of the Combustion Institute, 2011, doi:10.1103/PhysRevLett.108.044503.