Efficient Design Methodology of an All-Electric Vehicle Powertrain using Multi-Objective Genetic Optimization Algorithm

2013-01-1758

04/08/2013

Authors
Abstract
Content
This paper presents a methodology to design the powertrain of an electrical vehicle (EV) in an optimal way. The electric vehicle optimal design is carried out using multiobjective genetic optimization algorithm. The developed methodology is based on the coupling of a genetic algorithm with powertrain component models. It allows determining the drive train components specifications for imposed vehicle performances, taking into account the dynamic model of the vehicle and all the components interactions. In this way, the components can be sized taking into account the whole system behavior in an optimal global design. The developed methodology is performed on the European driving cycle (NEDC) to estimate energy consumption gains but also powertrain mass reduction in comparison with a classical step-by-step methodology. This optimal procedure is notably important to increase electric vehicle range or reduce battery size and thus electric vehicle cost.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-1758
Pages
13
Citation
Abdelli, A., Le Berr, F., and Benlamine, R., "Efficient Design Methodology of an All-Electric Vehicle Powertrain using Multi-Objective Genetic Optimization Algorithm," SAE Technical Paper 2013-01-1758, 2013, https://doi.org/10.4271/2013-01-1758.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-1758
Content Type
Technical Paper
Language
English