This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Hybrid Approach for a Future Environmental Representation for Advanced Driver Assistance Systems
Technical Paper
2013-01-0733
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
In recent years of research activities within the field of Advanced Driver Assistance Systems (ADAS), it became more and more obvious, that the present standard representation of the current state of a vehicle's environment is not sufficient anymore. Experience has shown that for functions addressed in the years ahead, there is a strong need for more dense environmental models, than the commonly used object lists. Many proposals have been made towards this direction; these are discussed in this work. Based on this overview, we propose a so called “Hybrid Environmental Model” approach for meeting requirements of future ADAS functions by complementing the existing solutions with a dense, grid-based representation. Additionally, methods are discussed which enhance the efficiency of data transport and therefore enable a potential series application of this approach.
Recommended Content
Technical Paper | Lane Detection: A New, Low Cost System Offering Several Unique Application Opportunities. LIS100 |
Technical Paper | Trends in Automotive Use of ITS Technologies for Safety |
Authors
Citation
Hohm, A., Grewe, R., and Lueke, S., "Hybrid Approach for a Future Environmental Representation for Advanced Driver Assistance Systems," SAE Technical Paper 2013-01-0733, 2013, https://doi.org/10.4271/2013-01-0733.Also In
References
- Broggi A. , Zelinsky A. , Parent M. , Thorpe C. E. Intelligent Vehicles Springer Handbook of Robotics Siciliano B. and Khatib O. Springer 2008
- Dietmayer K. , Kirchner A. , Kämpchen N. Fusionsarchitekturen zur Umfeldwahrnehmung für zukünftige Fahrerassistenzsysteme Fahrerassistenzsysteme mit maschineller Wahrnehmung Maurer M. and Stiller C. Berlin Springer 2005
- Winner , H. Adaptive Fahrgeschwindigkeits-regelung ACC Konstanz Christiani 2002
- Lueke S. , Komar M. , Strauss M. Reduced Stopping Distance by Radar-Vision Fusion AMAA Advanced Microsystems for Automotive Applications Berlin 2007 21 35
- Schittenhelm H. Design of Effective Collision Mitigation Systems and Prediction of Their Statistical Efficiency to Avoid or Mitigate Real World Accidents Fisita World Automotive Congress Munich 2008
- Elfes A. Using Occupancy Grids for Mobile Robot Perception and Navigation Computer 22 6 46 57 1989
- Konrad M. , Fuchs M. , Loehlein O. , Dietmayer K. Detektion und Tracking dynamischer Objekte in Occupancy Grids FAS 2011 - 7. Workshop Fahrerassistenzsysteme Maurer M. and Stiller C. Karlsruhe 2011 105 114
- Weiss T. , Schiele B. , Dietmayer K. Robust Driving Path Detection in Urban and Highway Scenarios Using a Laser Scanner and Online Occupancy Grids Proceedings of IEEE Intelligent Vehicles Symposium Istanbul 2007 184 189
- Konrad M. , Szczot M. , Dietmayer K. Road Course Estimation in Occupancy Grids Proceedings of IEEE Intelligent Vehicles Symposium San Diego 2010 412 417
- Vu T.-D. , Aycard O. , Appendrodt N. Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments Proceedings of IEEE Intelligent Vehicles Symposium Istanbul 2007 190 195
- Vu T.-D. , Burlet J. , Aycard O. Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results Proceedings of IEEE Intelligent Vehicles Symposium Eindhoven 2008 684 689
- Bouzouraa M. E. , Hofmann U. Fusion of Occupancy Grid Mapping and Model Based Object Tracking for Driver Assistance Systems using Laser and Radar Sensors Proceedings of IEEE Intelligent Vehicles Symposium San Diego 2010 294 300
- Bouzouraa M. E. , Hofmann U. Fusion kartenbasierter Umfeldwahrnehmung mit modellbasierter Objektverfolgung für Fahrerassistenzsysteme FAS2011 - 7. Workshop Fahrerassistenzsysteme Maurer M. and Stiller C. Karlsruhe 115 123 2011
- Coué C. , Pradalier C. , Laugier C. , Fraichard T. , Bessière P. Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application The International Journal of Robotics Research 25 1 19 30 Jan. 2006
- Richter E. , Lindner P. , Waniliek G. , Takagi K. , Isogai A. Advanced Occupancy Grid Techniques for Lidar based Object Detection and Tracking Proceedings of IEEE Conference on Intelligent Transportation Systems St. Louis 2009 450 454
- Danescu R. , Oniga F. , Nedevschi S. Particle Grid Tracking System for Stereovision Based Environment Perception Proceedings of IEEE Intelligent Vehicles Symposium San Diego 2010 987 992
- Homm F. , Kaempchen N. , Ota J. , Burschka D. Efficient Occupancy Grid Computation on the GPU with Lidar and Radar for Road Coundary Detection Proceedings of IEEE Intelligent Intelligent Vehicles Symposium San Diego 2010 1006 1013
- Darms M. , Komar M. , Lueke S. Map based Road Boundary Estimation Proceedings of IEEE Intelligent Vehicles Symposium San Diego 2010 609 614
- Reichel M. , Bouzouraa M. E. , Siegel A. , Siedersberger K.-H. , Maurer M. Erweiterte Umfelderkennung und Nutzung einer Ausweichanalyse als Grundlage einer aktiven Gefahrenbremsung AAET 2010 Automatisierungs-, Assistenz und eingebettete Systeme fuer Transportmittel Braunschweig 2010 150 169
- Hohm A. , Wojek C. , Schiele B. , Winner H. Multi-Level Sensorfusion and Computer-Vision Algorithms within a Driver Assistance System for Avoiding Overtaking Accidents FISITA World Automotive Congress Munich 2008
- Thrun S. , Burgard W , Fox D. Probabilistic Robotics Cambridge MIT Press 2006
- Dietmeyer K. Evidenztheorie: Ein Vergleich zwischen Bayes- und Dempster-Shafer-Methoden Informationsfusion in der Mess- und Regelungstechnik Beyerer J. , León F. Punte , Sommer K.D. Karlsruhe Universitätsverlag Karlsruhe 2006
- Winner , H. ; Hakuli , S. ; Wolf , G. Handbuch Fahrerassistenzsysteme 2 Vieweg+Teubner Verlag Wiesbaden 2012