This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Development of the NOx Emission Model for the Heavy Duty Diesel Engine Application Using Combustion Characteristic Parameters
Technical Paper
2013-01-0532
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Tighter emission norms and fuel economy demands have prompted diesel engine manufacturers to implement Aftertreatment systems for both light-duty and heavy-duty diesel applications. After implementing Diesel Particulate Filter (DPF) technology to comply with 2007 Environmental Protection Agency (EPA) emissions regulations, OEMs have turned their attention towards NOx reductions with SCR technology. Current SCR technologies include liquid based Urea injection into the exhaust stream for NOx reductions and Solid Ammonia Storage and Delivery System (ASDS) which involves dosing gaseous Ammonia. Irrespective of the technology in use, the estimation of engine-out NOx emissions plays a vital role in reductant (Urea/Ammonia) dosing estimation via feed-back controls. The general method for determination of the engine-out NOx emissions is to use commonly available NOx emission sensors (NOx Sensors). However, NOx sensors have their own drawbacks. With On-Board Diagnostics (OBD) requirements in place for the 2013 model year, the use of additional sensors translates to additional implementation costs adding up to warranty and maintenance costs. Therefore, the necessity of the virtual engine out NOx emission estimation is very important. In this regard, a study has been performed to predict the engine out NOx emission values both at steady state and transient conditions. The NOx emission model uses the empirical relation that is based upon the real time estimation of NOx emissions. The empirical relation is a function of engine parameters such as engine speed, engine load, intake Oxygen concentration, injection quantity, timing, fuel pressure etc.
Recommended Content
Journal Article | A Metal Fibrous Filter for Diesel Hybrid Vehicles |
Technical Paper | ExhAUST: DPF Model for Real-Time Applications |
Authors
Topic
Citation
Singh, N., Nagabushan-Venkatesh, P., Nigro, E., and Lack, A., "Development of the NOx Emission Model for the Heavy Duty Diesel Engine Application Using Combustion Characteristic Parameters," SAE Technical Paper 2013-01-0532, 2013, https://doi.org/10.4271/2013-01-0532.Also In
References
- Hirata , K. , Masaki , N. , Ueno , H. , and Akagawa , H. Development of Urea-SCR System for Heavy-Duty Commercial Vehicles SAE Technical Paper 2005-01-1860 2005 10.4271/2005-01-1860
- Johannessen , T. , Schmidt , H. , Svagin , J. , Johansen , J. et al. Ammonia Storage and Delivery Systems for Automotive NOx Aftertreatment SAE Technical Paper 2008-01-1027 2008 10.4271/2008-01-1027
- Hegarty , K. , Favrot , R. , Rollett , D. , and Rindone , G. Semi-Empiric Model Based Approach for Dynamic Prediction of NOx Engine Out Emissions on Diesel Engines SAE Technical Paper 2010-01-0155 2010 10.4271/2010-01-0155
- Ericson , C. , Westerberg , B. , Andersson , M. , and Egnell , R. Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems SAE Technical Paper 2006-01-0687 2006 10.4271/2006-01-0687
- Andersson , M. , Johansson , B. , Hultqvist , A. , and Nöhre , C. A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion SAE Technical Paper 2006-01-0195 2006 10.4271/2006-01-0195
- Atkinson Christopher M. , Traver Michael L. and Atkinson Richard J. A Neural Networks Based Virtual NOx Sensor for Diesel Engines
- Brahma , I. , Sharp , M. , and Frazier , T. Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization SAE Int. J. Engines 2 1 1433 1443 2009 10.4271/2009-01-1508
- Heywood John B. Internal Combustion Engine Fundamentals McGraw-Hill 1988 2nd