This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

Journal Article
ISSN: 1946-3952, e-ISSN: 1946-3960
Published October 23, 2012 by SAE International in United States
Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray
Citation: Kobashi, Y., Maekawa, H., Kato, S., and Senda, J., "Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray," SAE Int. J. Fuels Lubr. 5(3):1404-1413, 2012,
Language: English


  1. Aoyama, T., Hattori, Y., Mizuta, J., and Sato, Y., “An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine,” SAE Technical Paper 960081, 1996, doi:10.4271/960081.
  2. Kimura, S., Aoki, O., Kitahara, Y., and Aiyoshizawa, E., “Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards,” SAE Technical Paper 2001-01-0200, 2001, doi:10.4271/2001-01-0200.
  3. Akihama, K., Takatori, Y., Inagaki, K., Sasaki, S. et al., “Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature,” SAE Technical Paper 2001-01-0655, 2001, doi:10.4271/2001-01-0655.
  4. Kumano, K. and Iida, N., “Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement,” SAE Technical Paper 2004-01-1902, 2004, doi:10.4271/2004-01-1902.
  5. Sjöberg, M., Dec, J., and Cernansky, N., “Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments,” SAE Technical Paper 2005-01-0113, 2005, doi:10.4271/2005-01-0113.
  6. Sjöberg, M. and Dec, J., “Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels,” SAE Technical Paper 2006-01-0629, 2006, doi:10.4271/2006-01-0629.
  7. Aroonsrisopon, T., Werner, P., Waldman, J., Sohm, V. et al., “Expanding the HCCI Operation With the Charge Stratification,” SAE Technical Paper 2004-01-1756, 2004, doi:10.4271/2004-01-1756.
  8. Shimazaki, N., Tsurushima, T., and Nishimura, T., “Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center,” SAE Technical Paper 2003-01-0742, 2003, doi:10.4271/2003-01-0742.
  9. Senda, J., Kawano, D., Hotta, I., Kawakami, K. et al., “Fuel Design Concept for Low Emission in Engine Systems,” SAE Technical Paper 2000-01-1258, 2000, doi:10.4271/2000-01-1258.
  10. Senda, J., Wada, Y., Kawano, D. and Fujimoto, H., “Improvement of Combustion and Emissions in Diesel Engines by Means of Enhanced Mixture Formation Based on Flash Boiling of Mixed Fuel”, Int. J. Engine Research, Vol.9, No.1, pp.15-27, (2008)
  11. Senda, J. and Fujimoto, H., “Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction,” SAE Technical Paper 2001-01-1071, 2001, doi:10.4271/2001-01-1071.
  12. Kawano, D., Senda, J., Kawakami, K., Shimada, A. et al., “Fuel Design Concept for Low Emission in Engine Systems 3rd Report: Analysis of Spray Characteristics for Mixed Fuels,” SAE Technical Paper 2002-01-0220, 2002, doi:10.4271/2002-01-0220.
  13. Kawano, D., Senda, J., Wada, Y., Fujimoto, H. et al., “Numerical Simulation of Multicomponent Fuel Spray,” SAE Technical Paper 2003-01-1838, 2003, doi:10.4271/2003-01-1838.
  14. Siebers, D. and Higgins, B., “Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions,” SAE Technical Paper 2001-01-0530, 2001, doi:10.4271/2001-01-0530.
  15. Okada, M., Shigetomi, D., Matsumoto, M., Kobashi, Y. and Senda, J., “Effects of Fuel Composition on Flame Lift-off Length and Pollutant Formation in Dual-component Fuel Spray”, submitted to COMODIA 2012.
  16. Amsden, A. A., “KIVA3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves”, Los Alamos National Laboratory Report LA-13313-MS, (1997)
  17. Kobashi, Y., Fujimori, K., Maekawa, H., Kato, S. et al., “Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray,” SAE Int. J. Engines 4(2):2193-2206, 2011, doi:10.4271/2011-24-0001.
  18. Beale, J. C. and Reitz, R. D., “Modeling Spray Atomization with the Kelvin-Helmholtz/ Rayleigh-Taylor Hybrid Model”, Atomization and Sprays, Vol.9, pp.623-650, (1999)
  19. Ely, J. F. and Huber, M. L., “NIST Thermophysical Properties of Hydrocarbon Mixtures Database User's Guide”, (1992)
  20. Huber, M. L. and Hanley, J. M., The Corresponding-States Principle: Dense Fluid, Chapter 12, Transport Properties of Fluids-Their Correlation, Prediction and Estimation, Cambridge University Press, pp.283-295, (1996)
  21. Halstead, M. P., Kirsch, L. J. and Quinn, C. P., “The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures - Fitting of a Mathematical Model”, Combustion and Flame, Vol.30, pp.45-60, (1977)
  22. Schäpertöns, H. and Lee, W., “Multidimensional Modelling of Knocking Combustion in SI Engines,” SAE Technical Paper 850502, 1985, doi:10.4271/850502.
  23. Theobald, M. A. and Cheng, W. K., “A Numerical Study of Diesel Ignition”, ASME 87-FE-2, pp.1-11, (1987)
  24. Nakama, K., Murase, E., Tsukakoshi, T., Kusaka, J. and Daisho, Y., “Optimization of Shell Model Parameters Using Gasoline Surrogate Scheme”, Transactions of JSAE, Vol.37, No.5, pp.57-62, (in Japanese) (2006)
  25. Hu, H. and Keck, J., “Autoignition of Adiabatically Compressed Combustible Gas Mixtures,” SAE Technical Paper 872110, 1987, doi:10.4271/872110.
  26. Kee, R. J., Ruply, F. M. and Miller, J. A., “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of a Gas-phase Chemical Kinetics”, Sandia Laboratories Report, SAND 89-8009B, (1989)
  27. Curran, H. J., Gaffuri, P., Pitz, W. J. and Westbrook, C. K., “Comprehensive Modeling Study of Iso-octane Oxidation”, Combustion and Flame, Vol.129-3, pp.253-280, (2002)
  28. Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J. and Silke, E. J., “A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-alkane Hydrocarbons from n-octane to n-hexadecane”, Combustion and Flame, Vol.156-1, pp.181-189, (2009)
  29. Magnussen, B. F. and Hjertager, B. H., “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion”, Proc. Combustion Institute, Vol.16, pp.719-729, (1976)

Cited By