Computational Study of Combustion Optimization in a Heavy-Duty Diesel Engine Using In-Cylinder Blending of Gasoline and Diesel Fuels

2012-01-1977

09/24/2012

Authors Abstract
Content
Low temperature combustion through in-cylinder blending of gasoline and diesel offers the potential to improve engine efficiency while yielding low engine-out soot and NOx emissions. This investigation utilized 3-D KIVA combustion simulation to guide the development of viable dual-fuel low temperature combustion strategies for heavy-duty applications.
Model-based combustion optimization was performed at 1531rpm and 11 bar BMEP for a 12.4 L heavy-duty truck engine. Various engine operating parameters were explored through design of experiments (DoE). The parameters involved in the optimization process included compression ratio, air-fuel ratio, EGR rate, gasoline-to-diesel ratio, and diesel injection strategy (i.e., single-diesel injection vs. two-diesel injections, diesel injection timings, and the split ratio between two-diesel injections). Optimal cases showed near zero soot emissions and very low NOx emissions. Moreover, fuel consumption was improved 11-13% over baseline diesel operation. Compared to a compression ratio of 16, a compression ratio of 14 was found to require a lower gasoline-to-diesel ratio and provide improved fuel consumption. Suitable diesel injection strategies and recommended air system targets were identified.
Meta TagsDetails
Pages
12
Citation
Zhang, Y., De Ojeda, W., and Wickman, D., "Computational Study of Combustion Optimization in a Heavy-Duty Diesel Engine Using In-Cylinder Blending of Gasoline and Diesel Fuels," SAE Technical Paper 2012-01-1977, 2012, .
Additional Details
Publisher
Published
Sep 24, 2012
Product Code
2012-01-1977
Content Type
Technical Paper
Language
English