This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Vibro-Acoustic Simulation of Side Windows and Windshield Excited by Realistic CFD Turbulent Flows Including Car Cavity
Technical Paper
2012-01-1521
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Nowadays, the interior vehicle noise due to the exterior
aerodynamic field is an emerging topic in the acoustic design of a
car. In particular, the turbulent aerodynamic pressure generated by
the air flow encountering the windshield and the side windows
represents an important interior noise source.
As a consequence PSA Peugeot Citroën is interested in the
numerical prediction of this aerodynamic noise generated by the car
windows with the final objective of improving the products design
and reducing this noise. In the past, several joint studies have
been led by PSA and Free Field Technologies on this topic. In those
studies an efficient methodology to predict the noise transmission
through the side window has been set up. It relies on a two steps
approach: the first step involves the computation of the exterior
turbulent field using an unsteady CFD solver (in this case EXA
PowerFlow). The second step consists in the computation of the
vibro-acoustic transmission through the side window using the
finite element vibroacoustic solver Actran.
The present paper extends this methodology for the handling of
multiple windows, i.e., the two front side windows and the
windshield. The complete car cavity is modeled as well. First, a
complete description of the method and the finite element model is
provided, from the boundary conditions to the different components
involved, like the windows, the seals and the car cavity. The total
wind noise level results and the relative contributions of the
different windows are then presented and compared to measurements
for a real car model. The influence of the flow yaw angle (0°
versus 10° orientation) is also assessed.
Recommended Content
Technical Paper | SEA Modeling of Vehicle Wind Noise and Load Case Representation |
Technical Paper | Wind Noise Source Characterization and How It Can Be Used To Predict Vehicle Interior Noise |
Authors
Topic
Citation
Van Herpe, F., D'Udekem, D., Jacqmot, J., and Kouzaiha, R., "Vibro-Acoustic Simulation of Side Windows and Windshield Excited by Realistic CFD Turbulent Flows Including Car Cavity," SAE Technical Paper 2012-01-1521, 2012, https://doi.org/10.4271/2012-01-1521.Also In
References
- Free Field Technologies “ACTRAN 12, User's manual” www.fft.be
- Caro, S. Ramonda, A. Perot, F. Vergne, S. Pachebat, M. “TBL Noise generated by a simplified side mirror configuration and acoustic transfer through the window: modelling using Actran and Fluent” AIAA 2006, Paper 2006-2490
- Van Herpe, F. “Aero-Vibro-Acoustic Analysis of a Side Window Loaded with a Turbulent Wall Pressure Fluctuation” ACTRAN user's conference 2010 Brussels, Belgium
- Caro, S. Manera, J. Detandt, Y. Toppinga, R. Mendonça, F. “Validation of a New Hybrid CAA strategy and Application to the Noise Generated by a Flap in a Simplified HVAC Duct” AIAA 2009, Paper 09-3352
- Manera, J. Detandt, Y. d'Udekem, D. Détry, S. “Aero-Acoustic Predictions of Automotive Instrument Panel Ducts,” SAE Technical Paper 2009-01-2237 2009 10.4271/2009-01-2237
- Hekmati, A. Ricot, D. Druault, P. “Vibroacoustic behavior of a plate excited by synthesized aeroacoustic pressure fields” AIAA 2010, Paper 2010-3950