This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Brake Dynamometer Test Variability - Analysis of Root Causes
Technical Paper
2010-01-1697
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Modern project management including brake testing includes the
exchange of reliable results from different sources and different
locations. The ISO TC22/SWG2-Brake Lining Committee established a
task force led by Ford Motor Co. to determine and analyze root
causes for variability during dynamometer brake performance
testing. The overall goal was to provide guidelines on how to
reduce variability and how to improve correlation between
dynamometer and vehicle test results. This collaborative accuracy
study used the ISO 26867 Friction behavior assessment for
automotive brake systems. Future efforts of the ISO task force will
address NVH and vehicle-level tests.
This paper corresponds to the first two phases of the project
regarding performance brake dynamometer testing and presents
results, findings and conclusions regarding repeatability
(within-lab) and reproducibility (between-labs) from different
laboratories and different brake dynamometers. The new EKB 3008
data exchange format was used by participating facilities to share
test results using spreadsheet applications, help automate the
evaluations, and simplify the different comparisons performed for
this project. This on one of the first practical applications for
the EKB 3008 format with several software platforms involved.
In order to minimize variations caused by test parts, components
(brake discs, brake pads, calipers and vehicle knuckles) were
carefully selected, prepared, and measured prior to testing.
Special attention was given to: test procedure implementation,
critical braking and testing conditions, dynamometer setup and
controls, data collection, data processing and test evaluation
routines. Statistical analysis (Minitab® and ISO Statistical
Methods) were used to separate variability caused by test parts and
caused by the test setup. Based on the findings, the paper presents
guidelines for improving repeatability (within-lab) and
reproducibility (between-labs) during regular testing
activities.
Compared to vehicle testing, variability root-cause
investigation using brake dynamometers is more efficient (less
sources of variation and less use of testing and engineering
resources) and under more controlled conditions. Findings from this
variability study will support future improvement efforts for
several laboratory and vehicle performance and NVH test procedure
and techniques.
Recommended Content
Journal Article | Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors |
Ground Vehicle Standard | Air Brake Actuator Test Performance Requirements - Truck and Bus |
Ground Vehicle Standard | Air Brake Actuator Test Procedure, Truck-Tractor, Bus, and Trailers |
Authors
Topic
Citation
Grochowicz, J., Wollenweber, K., Agudelo, C., and Abendroth, H., "Brake Dynamometer Test Variability - Analysis of Root Causes," SAE Technical Paper 2010-01-1697, 2010, https://doi.org/10.4271/2010-01-1697.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- ISO International Standard “Road vehicles-Brake lining friction materials-Friction behavior assessment for automotive brake systems,” ISO 26867 2009
- Abendroth, H. Haverkamp, M. Hoffrichter, W. Blaschke, P. et al “Current and New Approaches for Brake Noise Evaluation and Rating,” SAE Int. J. Passeng. Cars - Mech. Syst. 2 2 32 45 2009 10.4271/2009-01-3037
- Bender, A. Haesler, K. Thomas, C. Grochowicz, J. “Development of Universal Brake Test Data Exchange Format and Evaluation Format,” SAE Technical Paper 2010-01-1698 2010 10.4271/2010-01-1698
- Minitab Inc. Minitab (Version 15) Statistical Software State College, PA 2007
- Dohle, A. Elvenkemper, A. Lange, J. Degenstein, T. “The µ Value”-Friction Level Determination in Brake Systems,” XXVI International µ-Symposium
- Dohle, A. Fritzen, C-P. “Investigation of model based friction coefficient measurement (part I),” Institution of Mechanical Engineers Braking 2009 CHANDOS PUBLISHING 2009
- ISO International Standard “Road vehicles-Brake lining-Compressive strain test method,” ISO 6310 2009
- ISO International Standard “Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions,” ISO 5725-1 1994
- Schmitt, O. Duncan, T. “Method for Extracting Full Spectrum of Friction Materials Performance (Fingerprinting) using the SAE J2681 ,” SAE Technical Paper 2004-01-2768 2004 10.4271/2004-01-2768
- SAE International Surface Vehicle Recommended Practice “Dynamometer Global Brake Effectiveness,” SAE Standard J2522 Jun. 2003
- SAE International Surface Vehicle Recommended Practice “Disc and Drum Brake Dynamometer Squeal Noise Matrix,” SAE Standard J2521 Jan. 2006
- ISO International Standard “Road vehicles-Brake lining friction materials-Product definition and quality assurance,” ISO 15484 2008
- ISO International Standard “Accuracy (trueness and precision) of measurement methods and results-Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method,” ISO 5725-2 1994
- ISO International Standard “Accuracy (trueness and precision) of measurement methods and results-Part 6: Use in practice of accuracy values,” ISO 5725-6 1994
- ISO International Standard “Accuracy (trueness and precision) of measurement methods and results -- Part 5: Alternative methods for the determination of the precision of a standard measurement method,” ISO 5725-5 1998
- JCGM Joint Committee for Guides in Metrology “Evaluation of measurement data-An introduction to the “Guide to the expression of uncertainty in measurement” and related documents,” JCGM 104 2009
- Degenstein, T. Winner, H. “New methods of force and temperature measurement on a wheel brake during the braking process,” XXVII International µ-Symposium
- Fieldhouse, D. Ashraf, N. “Observation of the disc/pad interface pressure distribution during variable braking conditions and its influence on brake noise,” XXVII International µ-Symposium
- Sanders, P.G. Dalka, T. Hartsock, D. “Friction Material Compressibility as a Function of Pressure, Temperature, and Frequency,” SAE Technical Paper 2008-01-2574 2008 10.4271/2008-01-2574
- Tekscan, Inc. I-Scan ® Pressure Measurement System South Boston, MA 2008
- Yuan, Y. Halloran, P. “Calculation of Average Coefficient of Friction During Braking,” SAE Technical Paper 1999-01-3410
- Sardá, A. Haag, M. Winner, H. Semsch, M. “Experimental Investigation of Hot Spots and Thermal Judder,” SAE Technical Paper 2008-01-2544
- Eisengräber, R. Grochowicz, J. Schuster, M. Augsburg, K. et al. “Comparison of Different Methods for the Determination of the Friction Temperature of Disc Brakes,” SAE Technical Paper 1999-01-0138 1999 10.4271/1999-01-0138
- Dada, A.R. “Hayes High Airflow Design Rotor for Improved Thermal Cooling and Coning,” SAE Technical Paper 982248 1998 10.4271/982248
- Bröring, M. “Evaluation and Simulation of Brake Tests with Implementation on a Brake Dynamometer ( Auswertung und Simulation von Bremsentests sowie deren Implementierung auf einem Dynamometer ),” Cologne 2009
- Krishnapur, K. Luo, J. “Brake Squeal Rig and LACT Vehicle Test Correlation Improvement - Focus on Thermal Conditioning,” SAE Technical Paper 2004-01-2791 2004 10.4271/2004-01-2791
- Körner, M. Decker, F. Dreyer, M. Radespiel, R. “Examination of the brake disc air flow on a wind tunnel model of the VW Phaeton with transparent front wheel,” XXVII International µ-Symposium
- Schuetz, T. “Cooling Analysis of a Passenger Car Disk Brake,” SAE Technical Paper 2009-01-3049 2009 10.4271/2009-01-3049
- Matozo, L.T. Soares, M.R.F. Al-Qureshi, H.A. “The Effect of Environmental Humidity and Temperature on Friction Level and Squeal Noise Propensity for Disc Brake Friction Materials,” SAE Technical Paper 2008-01-2534 2008 10.4271/2008-01-2534
- Evans, C. O'Rourke, M. “The Effects of Humidity on Friction Material Performance,” SAE 2004 Brake Colloquium & Exhibition USA October 10-13 2004
- SAE International Surface Vehicle Standard “Dynamometer Effectiveness Characterization Test for Passenger Car and Light Truck Brake Friction Products,” J2430 Aug. 1999