This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Global Dynamic Models for XiL-based Calibration
Technical Paper
2010-01-0329
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The modern power train calibration process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust aftertreatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive simulation tools that represent the complete power train can likely contribute to improving the efficiency of the calibration process using an integral model based workflow.
Engine models, which are purely based on complex physical principles, are usually not capable of real-time applications, especially if the simulation is focused on transient emission optimization.
Methods, structures and the realization of a global dynamic real-time model are presented in this paper, combining physical knowledge and experimental models and also static and dynamic sub-structures. Such a model, with physical a priori information embedded in the model structure, provides excellent generalization capability.
Compared to established empirical modeling strategies this approach separates dynamic from static effects by different model types, which are linked via thermodynamic characteristics. Thus a physical interpretation of the empirical model is still possible, since the thermodynamic characteristics are meant to describe the combustion process in a most general way. Inputs are (besides engine speed) ECU actuators only, allowing easy integration into various calibration environments, e.g. HiL systems.
Recommended Content
Authors
Topic
Citation
Nebel, M., Vogels, M., Combe, T., Winsel, T. et al., "Global Dynamic Models for XiL-based Calibration," SAE Technical Paper 2010-01-0329, 2010, https://doi.org/10.4271/2010-01-0329.Also In
References
- Ayeb, M., Lichtenthäler, D., Winsel, T., and Theuerkauf, H.J., “SI Engine Modeling Using Neural Networks,” SAE Technical Paper 980790, 1998.
- Barba, C.: Erarbeitung von Verbrennungskennwerten aus Indizierdaten zur verbesserten Prognose und rechnerischen Simulation des Verbrennungsablaufes bei Pkw-DE-Dieselmotoren mit Common-Rail-Einspritzung, DISS. ETH Nr. 14276
- Baumann, J., Torkzadeh, D.D., Kiencke, U., Schlegl, T. et al., “Integration of a Common Rail Diesel Engine Model into an Industrial Engine Software Development Process,” SAE Technical Paper 2004-01-0900, 2004.
- Bittermann, A. et al.: Emissions Development of Vehicle Diesel Engines, MTZ 06/2004
- Combé, T.; Beitrag zur Drehmomentsimulation von Verbrennungsmotoren in Echtzeit, Shaker-Verlag, Aachen 2006
- Diener, R. et al.: Challenges during the broad Implementation of Model Based Methods in the Development and Calibration of ECUs, Design of Experiments (DoE) in Engine Development, 2009
- Gschweitl, K.; Bittermann, A.; Kranawetter, E.; Krenn, J.; Ladein, B.; Ebner, T.; Altenstrasser, H.; Koegeler, H. - M.; Emissionsauslegung des dieselmotorischen Fahrzeugantriebes mittels DoE - und Simulationsrechnung, MTZ 6/2004, Vieweg - Verlag, Wiesbaden, 2004
- Hametner, C.: Nonlinear Dynamic System Identification Using Local Model Architectures, Automatisierungstechnik, 56 (2008)
- Isermann, R.: Modellgestützte Steuerung, Regelung und Diagnose von Verbrennungsmotoren, Springer Verlag 2003
- Keuth, N. et al: Intelligent Neuronal Networks (INN): A new Modeling Approach for the Global Model Based Optimization of Combustion Engines and Power Train - Design and Modelling, DoE Conference 2007, Berlin
- Nelles, O.: Local linear model trees (LOLIMOT) toolbox for nonlinear system identification, 12th IFAC Symposium on System Identification (SYSID 2000), Santa Barbara, CA, USA, 2000
- Philipp, O.; Thalhauser, J.: Ein Dieselmotormodell mit Abgasturboaufladung, AGR und Zylinderdruckberechnung für HIL und SIL, 5. Symposium Steuerungssysteme für den Antriebsstrang, Berlin, 2005
- Vogels, M. et al.: Dynamic Powertrain Calibration: Using Transient DoE and Modelling Techniques, DoE Conference 2005, Berlin
- Wenzel, S.: Diesel engine soot and Nox emission modeling, Internat. Forum Abgas- und Partikelemissionen 2008, Ludwigsburg
- Winsel, T., Ayeb, M., Wilhelm, C., Theuerkauf, H.J. et al., “HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability,” SAE Technical Paper 2006-01-0613, 2006.
- Winsel,T.;Theuerkauf, H.: Automatisierte Generierung echtzeitfähiger neuronaler Modelle für Verbrennungsmotoren, DoE Conference 2003, Berlin, ISBN 3-8169-2271-6