This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Mount Force Reduction in a Scooter Engine Mounting System
Technical Paper
2009-32-0054
Annotation ability available
Sector:
Language:
English
Abstract
Crank balance factor and phase of crank balance tuning to minimize an engine mount forces by experimental methods during vehicle development is a time consuming process. The degree of crank balance factor and phase of crank balance optimization achieved relying on this approach alone is highly dependent upon the development engineer's experience. This situation should be helped if the initial crank balance factor and phase of crank balance provided to the development activity is near optimum. Engine mount forces are very crucial as they are primarily responsible for vibration of the vehicle. This paper discusses a method of modeling a scooter engine mounting system to predict mount forces and to minimize the mount forces by optimizing the crank balance factor and phase of crank balance. The engine mounting system under study is for a single link toggle mechanism used for scooter engines. A planar multi-body dynamics approach is used to model the system considering engine excitation forces, suspension and tire forces. Using an embedding technique, the governing equations are reduced to the independent acceleration equations and solved using a 4th order Runge-Kutta method for the independent co-ordinates and velocities. The dependent accelerations and mount forces are then obtained. The simulated acceleration results are used to validate the model which is compared with experimentally measured data. An optimization algorithm is then developed to minimize the mount forces that are transmitted to the vehicle frame by optimizing crank balance factor and phase of crank balance.
Recommended Content
Authors
Topic
Citation
Bhat, M., Marudachalam, K., and Padmanabhan, C., "Mount Force Reduction in a Scooter Engine Mounting System," SAE Technical Paper 2009-32-0054, 2009.Also In
References
- Shabana A.A. “Computational Dynamics” John Wiley & Sons, Inc 2nd 2001
- Kannan M. Choudhari N Chandramouli P. Balla V. K. “Analytical Prediction and Measurement of Engine Mount Forces” SAE 2007-32-0105
- Sano T. Takeuchi A. “Vibration Isolation Mount for Scooter Powerunit” SAE 2007-32-0101
- Snyman J.A. Heyns P.S. Vermeulen P.J. “Vibration Isolation of a Mounted Engine through Optimization” Mechanisms and Machine Theory 30 1 109 118 1995
- Aikawa Y. Osakabe T. Sunayama Y. “Prediction of Engine Mount Vibration using Multi Body Simulation with Finite Element Models” SAE 2005-32-000
- Cossalter V. “Motorcycle Dynamics” 1st Race Dynamics;Greendale 2002