Using Timber in a Multi-Body Design Environment to Develop Reliable Embedded Software

2008-01-0742

04/14/2008

Event
SAE World Congress & Exhibition
Authors Abstract
Content
A major challenge for the automotive industry is to reduce the development time while meeting quality assessments for their products. This calls for new design methodologies and tools that scale with the increasing amount and complexity of embedded systems in today's vehicles.
In this paper we undertake an approach to embedded software design based on executable models expressed in the high-level modelling paradigm of Timber. In this paper we extend previous work on Timber with a multi-paradigm design environment, aiming to bridge the gap between engineering disciplines by multi-body co-simulation of vehicle dynamics, embedded electronics, and embedded executable models. Its feasibility is demonstrated on a case study of a typical automotive application (traction control), and its potential advantages are discussed, as highlighted below:
  • shorter time to market through concurrent, cooperative distributed engineering, and
  • reduced cost through adequate system design and dimensioning, and
  • improved efficiency of the design process through migration and reuse of executable software components, and
  • reduced need for hardware testing, by specification verification on the executable model early in the design process, and
  • improved quality, by enabling formal methods for verification.
Meta TagsDetails
DOI
https://doi.org/10.4271/2008-01-0742
Pages
9
Citation
Eriksson, J., Nybacka, M., Larsson, T., and Lindgren, P., "Using Timber in a Multi-Body Design Environment to Develop Reliable Embedded Software," SAE Technical Paper 2008-01-0742, 2008, https://doi.org/10.4271/2008-01-0742.
Additional Details
Publisher
Published
Apr 14, 2008
Product Code
2008-01-0742
Content Type
Technical Paper
Language
English