Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System

2007-01-0554

04/16/2007

Event
SAE World Congress & Exhibition
Authors Abstract
Content
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type of data that is encountered with consumer vehicle ratings. MTS enables a reduction in dimensionality and the ability to develop a scale based on MD values. MTS identifies a set of useful variables from the complete data set with equivalent correlation and considerably less time and data. This paper presents the application of the Adjoint Matrix Approach to MTS for vehicle braking to identify a reduced set of useful variables in multidimensional systems.
Meta TagsDetails
DOI
https://doi.org/10.4271/2007-01-0554
Pages
9
Citation
Cudney, E., Ragsdell, K., and Paryani, K., "Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System," SAE Technical Paper 2007-01-0554, 2007, https://doi.org/10.4271/2007-01-0554.
Additional Details
Publisher
Published
Apr 16, 2007
Product Code
2007-01-0554
Content Type
Technical Paper
Language
English