Development of an Ignition Model for S.I. Engines Simulation

2007-01-0148

04/16/2007

Authors
Abstract
Content
An ignition model based on Lagrangian approach was set-up. A lump model for the electrical circuit of the spark plug is used to compute breakdown and glow energy. At the end of shock wave and very first plasma expansion, a spherical kernel is deposited inside the gas flow at spark plug location. A simple model allows one to compute initial flame kernel radius and temperature based on physical mixture properties and spark plug characteristics. The sphere surface of the kernel is discretized by triangular elements which move radially according to a lagrangian approach. Expansion velocity is computed accounting for both heat conduction effect at the highest temperatures and thermodynamic energy balance at relatively lower temperatures. Turbulence effects and thermodynamic properties of the air-fuel mixture are accounted for. Restrikes are possible depending on gas flow velocity and mixture quality at spark location. CFD solver and 1D/lagrangian ignition model are closely coupled at each time step. The model proves to strongly reduce the grid sensitivity. The physical validation was carried out by reproducing the experimental tests by Herweg and Maly [1]. Comparisons showed a good agreement between experiments and numerical results.
Meta TagsDetails
DOI
https://doi.org/10.4271/2007-01-0148
Pages
16
Citation
Falfari, S., and Bianchi, G., "Development of an Ignition Model for S.I. Engines Simulation," SAE Technical Paper 2007-01-0148, 2007, https://doi.org/10.4271/2007-01-0148.
Additional Details
Publisher
Published
Apr 16, 2007
Product Code
2007-01-0148
Content Type
Technical Paper
Language
English