This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Application of Novel Viscoelastic Microcellular Foams for Passive Noise Control in Automotive Body Structures
Technical Paper
2006-01-0707
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
This paper discusses the development of lighter weight, superior acoustic performance and cost effective viscoelastic microcellular foams for the use in automotive passive noise control panels. The study incorporates the control of the foaming process for production of variable microcellular structures and morphologies for the novel foams under investigation. For that purpose, the foaming process was controlled for production of foam samples with various microcellular structures. Cross linked LDPE was used as a base material for the produced foams. Very high open-cell content (ranging between 43 - 95%), high microcellular cell densities (9E108 - 1.6E109 cells/cm3) and desired expansion ratios (3 - 9 folds) were successfully obtained. While the material is overly porous, it is noted that the unfoamed skins on the outer surfaces of the samples have prevented sound waves from penetrating the samples. Manual skin removal resulted in slight improvement in sound absorption testing. However, in order to get more reliable data, skinless samples need to be produced.
Recommended Content
Authors
- M. Y. Serry Ahmed - Microcellular Plastics Manufacturing Laboratory (MPML), University of Toronto
- P. C. Lee - Microcellular Plastics Manufacturing Laboratory (MPML), University of Toronto
- C. B. Park - Microcellular Plastics Manufacturing Laboratory (MPML), University of Toronto
- N. Atalla - Groupe d'Acoustique De l'Université de Sherbrooke (GAUS), Université de Sherbrooke
Citation
Ahmed, M., Lee, P., Park, C., and Atalla, N., "Application of Novel Viscoelastic Microcellular Foams for Passive Noise Control in Automotive Body Structures," SAE Technical Paper 2006-01-0707, 2006, https://doi.org/10.4271/2006-01-0707.Also In
References
- Propagation of sound in porous media: modeling sound absorbing materials Allard J.-F. 1993
- Attenborough K. Acoustical characterization of rigid fibrous absorbents and granular media J. Acoust. Soc. Am. 73 785 799 1983
- Ingard U. Notes on Sound Absorption Technology The Noise Control Foundation Arlington, Branch, Poughkeepsie, NY 1993
- Zwikker C. Kosten C.W. Sound absorbing materials Elsevier New York 1949
- Biot, M.A. The theory of propagation of elastic waves in a fluid saturated porous solid J. Acoust. Am. 28 168 191
- Champoux Y. Allard J.-F. Dynamic tortuosity and bulk modulus in air-saturated porous media J. Appl. Phys 70 1975 1979 1991
- Atalla Y. Panneton R. Atalla N. Measurement of the acoustic properties of open porous materials using an impedance tube 2nd AutoSEA User's Conference Detroit, Michigan April 2002
- Allard, J.F. Castagnede, B. Henry, M. Launks, W. Evaluation of tortuosity in acoustic porous materials saturated by air Review of Scientific Instruments 65 3 March 1994 754 5
- Atalla Y. Panneton R. “Inverse Acoustical Characterization of Open Cell Porous Media Using Impedance Tube Measurements,” Canadian Acoustics 33 1 11 24 2005
- Lee, P.C. Naguib, H.E. Park, C.B. Wang, J. “Increase of Open-Cell Content by Plasticizing Soft Regions with Secondary Blowing Agent,” Polymer Engineering and Science July 2005
- Naguib, H.E. Park, C.B. Reichelt, N. Fundamental Foaming Mechanisms Governing Volume Expansion of Extruded PP Foams Journal of Applied Polymer Science 91 4 2661 2668 2004
- Klempner D. Frisch K.C. Handbook of Polymeric Foams and Foam Technology N.Y. 1991