This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems
Technical Paper
2003-01-2368
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube’s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube’s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT’s.
Authors
- Kanapathipillai Wignarajah - Lockheed Martin Company, NASA Ames Research Center
- Suresh Pisharody - Lockheed Martin Company, NASA Ames Research Center
- Martin Cinke - Eloret Corporation, NASA Ames Research Center
- Jing Li - Eloret Corporation, NASA Ames Research Center
- Bin Chen - Eloret Corporation, NASA Ames Research Center
- John Fisher - NASA Ames Research Center
- Lance Delzeit - NASA Ames Research Center
- Meyya Meyyappan - NASA Ames Research Center
- Harry Partridge - NASA Ames Research Center
Topic
Citation
Cinke, M., Li, J., Chen, B., Wignarajah, K. et al., "Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems," SAE Technical Paper 2003-01-2368, 2003, https://doi.org/10.4271/2003-01-2368.Also In
References
- Yin Y.F. Mays T. McEnaney B. 1999 Langmuir 15 8714
- Chiang L.W. Brinson B.E. Huang A.Y. Willis P.A. Bronikowski M.J. Margrave, J.L. Smalley R.E. Hauge R.H. 2001 J. Phy. Chem. B 105 8297
- Du W. Wilson L. Ripmeester J. Dutrsac R. Simard B. Denommee S. 2002 2 343 Nanoletters
- Yudasaka M. Kataura H. Ichihashi T. Qin L.C. Kar S. Ijima S. 2001 Nanoletters 1 487
- Nikolaev P. Bronikowski M.J. Bradley R.K. Rohmund F. Colbert D.T. Smith, K.A. Smalley R.E. 1999 Chem. Phys. Letts. 333 91
- Delzeit L. Chen B. Cassell A. Steven R. Nguyen C. Meyappan M. Chem. Phys. Lett. 2001 348 368-
- Webb P.A. Orr C. 1997 Analytical Methods in Fine Particle Technology Micromeritics
- Jorio, A. Dresselhaus, M.S. Souza, M. Dantas, M.S.S. Pimenta, M.A. Rao, A.M. Saito R. Liu. C. Phys. Rev. Lett. 2000 85 2617
- Yang C.M. Kaneko K. Yudasaka M. Ijima S. 2002 Nanoletters 2 385
- Luo J. Z. Gao L.Z. Leung Y.L. Au C.T. Catalyst Lett 2000 66 91
- Keller D. E. Ph.D. thesis University of Utrecht Netherlands 2002
- Sumanasekera G.U. Adu, C.K.W. Fang S. Eklund P.C. Phy. Rev. Letts. 2000 85 1096 1099
- Ronzon E. Del Angel G. 1999 Molecular Catalysis A: Chemical 148 105
- Th Braun Wohlers M. Belz T. Nowizke G. Wortmann G. Uchida N. Pfander N. Schogel R. 2000 Catlyst. Lett. 43 175
- Rasinkangas M. Pakkanen T.T. Pakkanen T.A. 1994 j.Organomet. Chem. 476 C6