An Integrated Mathematical Model of PEM Fuel Cells Propulsion Systems for Automotive Applications

2003-01-2270

06/23/2003

Event
Future Transportation Technology Conference & Exposition
Authors Abstract
Content
Fuel cells are widely accepted to be the alternative powertrain with the highest potential to compete with the internal combustion engine for a mean-long future sustainable prospective for passenger mobility: Proton Exchange Membrane Fuel Cells (PEMFC) seem to be the most promising technology.
Anyway, the final goal is still far to be reached, since often the great potential advantages connected with fuel cells are not completely obtained, due to the difficulties encountered in component design and optimization. Moreover, H2 availability still appears to be one of the most important limitations.
Taking the lead by these considerations the authors derived a physically consistent integrated mathematical model of a PEM propulsion system: the model is fully modular and is aimed both to gain a deeper insight of the complex chemical and thermo-fluid-dynamical processes involved, and to the development of control strategies for the propulsion system and all its auxiliaries.
Here the model is presented and described in its main features: a validation of some of the sub-systems is also presented basing on experimental data available in literature.
Meta TagsDetails
DOI
https://doi.org/10.4271/2003-01-2270
Pages
12
Citation
Cipollone, R., and Villante, C., "An Integrated Mathematical Model of PEM Fuel Cells Propulsion Systems for Automotive Applications," SAE Technical Paper 2003-01-2270, 2003, https://doi.org/10.4271/2003-01-2270.
Additional Details
Publisher
Published
Jun 23, 2003
Product Code
2003-01-2270
Content Type
Technical Paper
Language
English