This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Development of a Methodology to Separate Thermal from Oil Aging of a Catalyst Using a Gasoline-Fueled Burner System
Technical Paper
2003-01-0663
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Typically, an engine/dynamometer thermal aging cycle contains combinations of elevated catalyst inlet temperatures, chemical reaction-induced thermal excursions (simulating misfire events), and average air/fuel ratio's (AFR's) to create a condition that accelerates the aging of the test part. In theory, thermal aging is predominantly a function of the time at an exposure temperature. Therefore, if a burner system can be used to simulate the exhaust AFR and catalyst inlet and bed temperature profile generated by an engine running an accelerated aging cycle, then a catalyst should thermally age the same when exposed to either exhaust stream.
This paper describes the results of a study that examined the aging difference between six like catalysts aged using the Rapid Aging Test (RAT) cycle (an accelerated thermal aging cycle). Three catalysts were aged using a gasoline-fueled engine aging stand; the other three were aged using a computer controlled burner system. Both systems were programmed to run aging cycles that provided the same inlet temperature and AFR profiles, and space velocity conditions. Each catalyst was evaluated using a vehicle over the FTP emissions test cycle and an AFR sweep test suing an engine test stand before and after aging. Finally, the catalysts were cored and analyzed to provide a composition and surface area comparison.
Recommended Content
Authors
Citation
Webb, C. and Bykowski, B., "Development of a Methodology to Separate Thermal from Oil Aging of a Catalyst Using a Gasoline-Fueled Burner System," SAE Technical Paper 2003-01-0663, 2003, https://doi.org/10.4271/2003-01-0663.Also In
References
- Ball, D. Mohammed, A. Schmidt, W. “Application of Accelerated Rapid Aging Test (RAT) Schedules with Poisons: The Effects of Oil Derived Poisons, Thermal Degradation, and Catalyst Volume on FTP Emissions,” SAE 972846
- Sims, G. Sjohri, S. “Catalyst Performance Study Using Taguchi Methods,” SAE 881589
- Theis, J. “Catalytic Converter Diagnosis Using the Catalyst Exotherm,” SAE 94058
- Webb, C. Bartley, G. Bykowski, B. Farnsworth, G. Riley, M. “Catalyst Aging Evaluation with Exposure to 0.06 and 0.11 Percent Phosphorus Oils Using the FOACS™ Burner System,” SAE 20030269
- Hepburn, J Dobson, D. Hubbard, C. Otto, K. “The Pulse Flame Combustor Revisited,” SAE 962118
- Hepburn, J. “A Comparison Between the Comustion of Isooctane, Methanol, and Methane in Pulse Flame Combustors with Closed Loop AFR Control,” SAE 920799
- Usemen, R. Subramanian, S. McCabe, R. Kudla, R. “Design Considerations for Natural Gas Vehicle Catalytic Converters,” SAE 933036
- Usmen, R. et al “Techniques for Analyzing Thermal Deactivation of Automotive Catalysts,” SAE 922336
- Nelson, W. “Accelerated Testing - Statistical Models, Test Plans, and Data Analysis,” John Wiley & Sons New York 0-471-52277-5
- Wong, C. Tsang, M. “Temperature-Programmed Reduction Studies of Al2O3-Supported Pt/Rh Catalysts,” SAE 922337
- Bisley, R. O'Sullivan, R. Wilkins, A. “The Effect of High Temperature Aging on Platinum-Rhodium and Palladium-Rhodium Three-Way Catalysts,” SAE 910175
- Stenbom, B. et al “Thermal Deactivation of a Three-Way Catalyst - Changes of Structural and Performance Properties,” SAE 900273
- Skowron, J. et al “Effect of Aging and Evaluation Conditions on Three-Way Catalyst Performance,” SAE 892093
- Carol, L.A. Newman, N.E. Mann, G.S. “High Temperature Deactivation of Three-Way Catalyst,” SAE 892040
- Donahue, K. et al “In-Use Catalyst Surface Area and its Relation to HC Conversion Efficiency and FTP Emissions,” SAE 861553
- Williamson, W. Perry, J. Goss, R. Gandhi, H. Beason, R. “Catalyst deactivation Due to Glaze Formation from Oil-Derived Phosphorus and Zinc,” SAE 841406
- Cully, S. McDonnell, T. “The Impact of Passenger Car Motor Oil Phosphorus Levels on Engine Durability, Oil Degradation, and Exhaust Emission in a Field Trial,” SAE 952344
- Cully, T. McDonnell, T. Ball, D. Kirby, C. Hawes, S. “The Impact of Passenger Car Motor Oil Phosphorus Levels on Automotive Emissions Control Systems,” SAE 961898
- Jobson, E. Hogberg, E. Weber, K. “Spatially Resolved Effects of Deactivation on Field-Aged Automotive Catalysts,” SAE 910173
- Sims, G. “Durability Characteristics of Palladium Catalysts,” SAE 912369