This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Modifying an Intake Manifold to Improve Cylinder-to-Cylinder EGR Distribution in a DI Diesel Engine Using Combined CFD and Engine Experiments
Technical Paper
2001-01-3685
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Event:
Spring Fuels & Lubricants Meeting & Exhibition
SAE International Fall Fuels & Lubricants Meeting & Exhibition
Language:
English
Abstract
Improved cylinder-to-cylinder distribution of EGR in a 2-L Direct-Injection (DI) Diesel engine has been identified as one enabler to help reach more stringent emission standards. Through a combined effort of modeling, design, and experiment, two manifolds were developed that improve EGR distribution over the original manifold while minimizing design changes to engine components or interfering with the many varied vehicle platform installations.
One of the modified manifolds, an elevated EGR entry (EEE) approach, provided a useful improvement over the original design that meet Euro-II emission standards, and has been put into production as it enabled meeting the Euro III emissions requirements a year early. The second revision, the distributed EGR entry (DEE) design, showed potential for further improvement in EGR distribution. This design has two EGR outlets rather than the one used in the original and EEE manifolds, and was first identified by modeling to be a promising concept. Using rapid prototype parts with variable geometry, over 40 variations of the DEE concept were studied experimentally in an attempt to identify an improved configuration. Parallel CFD modeling studies of just a few configurations pointed to a much-improved design, while the experimental methods used to determine EGR distribution sometimes gave quite misleading results. CFD modeling further identified why the experimental results were sometimes conflicting.
Recommended Content
Authors
Topic
Citation
Siewert, R., Krieger, R., Huebler, M., Baruah, P. et al., "Modifying an Intake Manifold to Improve Cylinder-to-Cylinder EGR Distribution in a DI Diesel Engine Using Combined CFD and Engine Experiments," SAE Technical Paper 2001-01-3685, 2001, https://doi.org/10.4271/2001-01-3685.Also In
References
- Krieger R. B. Siewert R. M. Pinson J. A. Gallopoulos N. E. Hilden D. L. Monroe D. R. Rask R. B. Solomon A. S. P. Zima P. “Diesel Engines: One Option to Power Future Personal Transportation Vehicles,” SAE Paper 972683 August 6-8 1997 San Diego
- Ntone F. Zehr R. L. “Multidimensional Fluid Flow Calculations in Diesel Engine Exhaust Valve-Port Geometries,” SAE Paper No. 930073 March 1-5 1993 Detroit
- Yoshizawa K. Mori K Arai K Iiyama A. “Numerical Analysis of Unsteady Exhaust Gas Flow and its Application for Lambda Control Improvement,” ASME Paper No. 99-ICE-251 1999 Fall Technical Conference
- Mattarelli E. Bainchi G. M. Ivaldi D. “Experimental and Numerical Investigation on the EGR System of a New Automobile Automotive Diesel Engine,” SAE Paper No. 2000-01-0224 March 6-9 2000 Detroit
- Graf G. Hrauda G. Bartsch P. “Layout of a High Load EGR System for LD, MD, and HD Engines by Means of Simulation” SAE Paper No. 2000-01-0225 March 6-9 2000 Detroit
- Ricardo North America, Inc. WAVE user's manual version 3.4 Burr Ridge, IL, USA 1996
- Haworth D. C. El Tahry S. H. Huebler M. S. Chang S. “Multidimensional Port-and-Cylinder Flow Calculations for Two- and Four-Valve-Per-Cylinder Engines: Influence of Intake Configuration on Flow Structure,” SAE Paper No. 900257 February 26 March 2 1990 Detroit
- Green R. M. “Measuring the Cylinder-to-Cylinder EGR Distribution in the Intake of a Diesel Engine During Transient Operation,” SAE Paper No. 2000-01-2866 October 16-19 2000 Baltimore