This content is not included in your SAE MOBILUS subscription, or you are not logged in.
A Detailed Phenomenological Model for Wall Heat Transfer Prediction in Diesel Engines
Technical Paper
2001-01-3265
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
A phenomenological heat transfer model for direct injection diesel engines has been developed. Utilizing the thermodynamic results of a combustion model as an input, the model is able to predict the temporal variation of the heat losses from the cylinder gas to the cylinder walls. Additionally, the division into isothermal combustion chamber subsurfaces allows the consideration of the spatial variation of the wall heat fluxes. The physical mechanisms such as flow dependent convection, heat radiation due to hot soot particles and isolation effects of deposited soot layers are described in detail. Thus, the effects of these mechanisms on the overall heat transfer can be studied. The heat transfer model was verified successfully by comparison to measured wall heat fluxes in a single-cylinder direct injection diesel engine. It is shown that the effects of engine speed and load, turbo-charging and soot deposition can be predicted with good accuracy.
Recommended Content
Authors
Topic
Citation
Eiglmeier, C., Lettmann, H., Stiesch, G., and Merker, G., "A Detailed Phenomenological Model for Wall Heat Transfer Prediction in Diesel Engines," SAE Technical Paper 2001-01-3265, 2001, https://doi.org/10.4271/2001-01-3265.Also In
References
- Woschni, G.: Die Berechnung der Wandwärmeverluste und der thermischen Belastung der Bauteile von Dieselmotoren, Motortechnische Zeitschrift MTZ (31), S. 491-499, 1970
- Hohenberg, G.: Berechnung des gasseitigen Wärmeüberganges in Dieselmotoren, Motortechnische Zeitschrift MTZ (41), 1980
- Bulaty, T.: Beitrag zur Berechnung des Wärmeüberganges, insbesondere in längsangespülten, langhubigen Dieselmotoren, Motortechnische Zeitschrift MTZ (46), 1985
- Morel, T.; Keribar, R.: A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers, SAE-Paper 850204, 1985
- Morel, T.; Keribar, R.: Heat Radiation in D.I. Diesel Engines, SAE-Paper 860445, 1986
- Boulouchos, K.; Hannoschöck, N.: Der Wärmetransport zwischen Arbeitsmedium und Brennraumwand, Motortechnische Zeitschrift MTZ (47), 1986
- Boulouchos, K.; Isch, R.: Modeling of Heat Transfer during Combustion: A Quasi-Dimensional Approach with Emphasis on Large Low-Speed Diesel Engines, International Symposium COMODIA 90, pp. 321-328, 1990
- Kleinschmidt, W.; Hebel, M.: Instationäre Wärmeübertragung in Verbrennungsmotoren, Abschlußbericht Kl 600/1-2 der Deutschen Forschungsgemeinschaft, 1995
- Kamimoto, T.; Minagawa, T.; Kobori, S.: A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines, SAE-Paper 972959, 1997
- Wolff, A.; Boulouchos, K.; Mueller, R.: Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics, SAE-Paper 970063, 1997
- Vogel, C: Einfluß von Wandablagerungen auf den Wärmeübergang im Verbrennungsmotor, Dissertation, Universität München, 1995
- Flynn,P.; Mizusawa, M.; Uyehara, O.A.; Myers, P.S.: “An Experimental Determination of the Instantaneous Potential Radiant Heat Transfer Within an Operating Diesel Engine”, SAE-Paper 720022, 1972
- Suhre, B.; Foster, D. E.: “In-Cylinder Soot Deposition Rates Due to Thermophoresis in a Direct Injection Diesel Engine”, SAE-Paper 921629, 1992
- Merker, G.P.; Eiglmeier, C.: „Fluid- und Wärmetransport, Wärmeübertragung”, Teubner-Verlag, Stuttgart, 1999
- Eiglmeier, C.: „Phänomenologische Modellbildung des gasseitigen Wandwärmeüberganges in Dieselmotoren”, Dissertation Universität Hannover, 2000
- Jaluria, Y., Torrance, K.: Computational Heat Transfer. Hemisphere Publishing Corporation, USA, 1986
- Cebeci, T., Bradshaw, P.: „Physical and Computational Aspects of Convective Heat Transfer”, Springer-Verlag, New York, 1988
- Kornhauser, A. A., Smith, J. L.: „Application of a Complex Nusselt Number to Heat Transfer During Compression and Expansion”, Journal of Heat Transfer, Transactions of the ASME Vol. 116, S. 536-542, 1994
- Bargende, M.: Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren”, Dissertation, Darmstadt, 1990
- Murakami, A., Arai, M, Hiroyasu, H.: “Swirl Measurements and Modeling in Direct Injection Diesel Engines”, SAE-Paper 880385, 1988
- Gibson, D.H.; Mahaffey, W.A., Mukerjee, T.: “In-Cylinder flow and combustion modeling of 1.7L caterpillar engine”, SAE-Paper 900253, 1990
- Hottel, H.C.; Sarofim, A.F.: “Radiative Transfer”, Mc-Graw-Hill Book Company, 1967
- Stiesch, G.; Merker,G.P.: “Phänomenologische Modellierung der Wärmefreisetzung und Schadstoffbildung im direkteinspritzenden Dieselmotor”, IV. Tagung Motorische Verbrennung, S. 305-315, Haus der Technik, Essen, 1999