Experimental and Numerical Investigation on the EGR System of a New Automotive Diesel Engine

2000-01-0224

03/06/2000

Event
SAE 2000 World Congress
Authors Abstract
Content
In this paper an integrated experimental and numerical approach is applied to optimize a new 2.5l, four valve, turbocharged DI Diesel engine, developed by VM Motori. The study is focused on the EGR system.
For this engine, the traditional dynamometer bench tests provided 3-D maps for brake specific fuel consumption and emissions as a function of engine speed and brake mean effective pressure. Particularly, a set of operating conditions has been considered which, according to the present European legislation, are fundamental for emissions. For these conditions, the influence of the amount of EGR has been experimentally evaluated.
A computational model for the engine cycle simulation at full load has been built by using the WAVE code. The model has been set up against experiments, since an excellent agreement has been reached for all the relevant thermo-fluid-dynamic parameters.
The simulation model has been used to gain a better insight on the EGR system operations. Furthermore, the influence of the most important geometric parameters (EGR valve seat diameter, intake manifold throttle diameter) on the amount of recycled gas for a few critical operating conditions has been investigated.
Meta TagsDetails
DOI
https://doi.org/10.4271/2000-01-0224
Pages
14
Citation
Mattarelli, E., Bianchi, G., and Ivaldi, D., "Experimental and Numerical Investigation on the EGR System of a New Automotive Diesel Engine," SAE Technical Paper 2000-01-0224, 2000, https://doi.org/10.4271/2000-01-0224.
Additional Details
Publisher
Published
Mar 6, 2000
Product Code
2000-01-0224
Content Type
Technical Paper
Language
English