This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Efficiency of Battery Electric Vehicles with In-Wheel Motors

Journal Article
13-04-01-0002
ISSN: 2640-642X, e-ISSN: 2640-6438
Published October 17, 2022 by SAE International in United States
Energy Efficiency of Battery Electric Vehicles with In-Wheel
                    Motors
Sector:
Citation: Kumar, D., Jain, V., and Potluri, R., "Energy Efficiency of Battery Electric Vehicles with In-Wheel Motors," SAE J. STEEP 4(1):17-37, 2023, https://doi.org/10.4271/13-04-01-0002.
Language: English

References

  1. COP 21 2020 https://unfccc.int/media/521376/paris-electro-mobility-declaration.pdf
  2. International Energy Agency 2020 https://iea.blob.core.windows.net/assets/e7dc869b-ca7b-4659-a7c4-1b8360189a5b/EVIGovernment Fleet Declaration.pdf
  3. MI 2020 https://www.mi.com/us/mi-electric-scooter/specs/
  4. Hero Electric 2020 https://heroelectric.in/photon/
  5. GEM Motors 2020 http://www.gemmotors.si/applications
  6. UBCO 2020 https://www.ubcobikes.com/
  7. MIT 2020 https://www.media.mit.edu/projects/citycar/overview/
  8. NTN 2016 https://www.ntnglobal.com/en/news/press/news201600030.html
  9. Yoichi , H. Future Vehicle Driven by Electricity and Control—Research on Four-Wheel-Motored ‘UOT Electric March II’ IEEE Transactions on Industrial Electronics 51 5 2004 954 962 10.1109/TIE.2004.834944
  10. 2020 https://www.proteanelectric.com/technology/
  11. Brembeck , J. , Ho , L.M. , Schaub , A. , Satzger , C. et al. 2011 https://elib.dlr.de/71352/1/IAVSD20110112final.pdf
  12. Lightyear, “ Lightyear 0 , 2022 https://lightyear.one/lightyear-0/
  13. en.byd.com 2020 https://en.byd.com/wp-content/uploads/2019/01/byd-c10m-2019-spec-sheet-1.pdf
  14. e-Traction 2020 http://www.saietta-europe.com/cases/sightseeing-buses
  15. He , P. et al. A Novel Design of All-Wheel Independent Steering Using Regenerative In-Wheel Motors for a Four In-Wheel-Motor Drive Electric Vehicle International Conference on Mechatronics and Machine Vision in Practice Auckland, New Zealand 2012
  16. Whitehead , A. and Hilton , C. 2018
  17. Wikipedia 2020 https://en.wikipedia.org/wiki/Wheelhubmotor
  18. Xue , X. , Cheng , K. , and Cheung , N. Selection of Electric Motor Drives for Electric Vehicles Power Engineering Conference, AUPEC’08 Sydney, NSW, Australia 2008
  19. Borroni , C. 2020 https://www.sae.org/news/2021/07/making-the-case-for-in-wheel-motors
  20. Magnax 2020 https://www.magnax.com
  21. AVID 2020 https://avidtp.com
  22. Protean Electric 2021 2021 https://www.proteanelectric.com/innovation/#overcoming-the-challenges
  23. Mitchell , W.J. , Borroni-Bird , C.E. , and Burns , L.D. Reinventing the Automobile: Personal Urban Mobility for the 21st Century Cambridge, MA MIT Press 2010 9780262528450
  24. Park , H. 2017
  25. de Castro , R. , Tanelli , M. , Araújo , R.E. , and Savaresi , S.M. Torque Allocation in Electric Vehicles with In-Wheel Motors: A Performance-Oriented Approach 52nd IEEE Conference on Decision and Control Firenze, Italy 2013 10.1109/CDC.2013.6760101
  26. Ding , X. , Wang , Z. , and Zhang , L. Hybrid Control-Based Acceleration Slip Regulation for Four-Wheel-Independently-Actuated Electric Vehicles IEEE Transactions on Transportation Electrification 7 3 2021 1976 1989 10.1109/TTE.2020.3048405
  27. Wu , J. , Wang , Z. , and Zhang , L. Unbiased-Estimation-Based and Computation-Efficient Adaptive MPC for Four-Wheel-Independently-Actuated Electric Vehicles Mechanism and Machine Theory 154 2020 104100 10.1016/ j.mechmachtheory.2020.104100
  28. Ding , X. , Wang , Z. , Zhang , L. , and Wang , C. Longitudinal Vehicle Speed Estimation for Four-Wheel-Independently-Actuated Electric Vehicles Based on Multi-Sensor Fusion IEEE Transactions on Vehicular Technology 69 11 2020 12797 12806 10.1109/ TVT.2020.3026106
  29. Potluri , R. and Singh , A. Path-Tracking Control of an Autonomous 4WS4WD Electric Vehicle Using Its Natural Feedback Loops IEEE Transactions on Control Systems Technology 23 5 2015 2053 2062 10.1109/TCST.2015.2395994
  30. 2015 2022 https://robotik.dfki-bremen.de/en/research/robot-systems/eo-smart-connecting-1/
  31. Kevin , C. 2019 https://www.cyclevolta.com/bosch-pedal-assist-bicycle-mid-motor-description-and-specs/
  32. Ather Energy 2020 https://www.atherenergy.com/
  33. Microlino 2020 https://microlino-car.com/en/microlino
  34. 2012 https://www.cdn.renault.com/content/dam/Renault/UK/brand-and-editorial/Brochures/Vehicles/twizy-brochure-oct.pdf
  35. Mahindra Electric 2 2016 https://www.mahindraelectric.com/vehicles/e2oPlus/
  36. Mitsubishi Motors 2010 https://www.mitsubishi-motors.com/en/showroom/i-miev/specifications/pdf/imievspecifications.pdf
  37. Nissan Leaf 2020 https://www.nissanusa.com/content/dam/Nissan/us/vehicle-brochures/2019/2019-nissan-nissan-leaf-brochure-en.pdf
  38. Chevrolet https://media.chevrolet.com/media/us/en/chevrolet/vehicles/bolt-ev/2019.tab1.html
  39. CaetanoBus 2022 https://caetanobus.pt/en/buses/e-city-gold-2/
  40. BKM Trolleybus 2020 https://bkm.by/en/catalog/trollejbus-modeli-433/
  41. Larminie , J. and Lowry , J. Electric Vehicle Technology Explained 2nd Hoboken, NJ John Wiley & Sons 2012 978-1-119-94273-3
  42. Amato , G. and Marino , R. Distributed Nested PI Slip Control for Longitudinal and Lateral Motion in Four In-Wheel Motor Drive Electric Vehicles IEEE 58th Conference on Decision and Control Nice, France 2019 7609 7614 10.1109/CDC40024.2019.9029644
  43. Amato , G. and Marino , R. Fault-Tolerant Distributed and Switchable PI Slip Control Architecture in Four In-Wheel Motor Drive Electric Vehicles 28th Mediterranean Conference on Control and Automation Saint-Raphaël, France 2020 7 12 10.1109/MED48518.2020.9183067
  44. Karlsson , S. and Kushnir , D. 2013
  45. Thomas , J. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results SAE Int. J. Passeng. Cars - Mech. Syst. 7 4 2014 1374 1384 https://doi.org/10.4271/2014-01-2562
  46. Waller , M.G. , Williams , E.D. , Matteson , S.W. , and Trabold , T.A. Current and Theoretical Maximum Well-to-Wheels Exergy Efficiency of Options to Power Vehicles with Natural Gas Applied Energy 127 2014 55 63 10.1016/j.apenergy.2014.03.088
  47. Curran , S.J. , Wagner , R.M. , Graves , R.L. , Keller , M. et al. Well-to-Wheel Analysis of Direct and Indirect Use of Natural Gas in Passenger Vehicles Energy 75 2014 194 203 10.1016/ j.energy.2014.07.035
  48. Campanari , S. , Manzolini , G. , and De la Iglesia , F.G. Energy Analysis of Electric Vehicles using Batteries or Fuel Cells through Well-to-Wheel Driving Cycle Simulations Journal of Power Sources 186 2 2009 464 477 10.1016/j.jpowsour.2008.09.115
  49. Eaves , S. and Eaves , J. A Cost Comparison of Fuel-Cell and Battery Electric Vehicles Journal of Power Sources 130 2004 208 212 10.1016/j.jpowsour.2003.12.016
  50. Maury , M. 2013 https://matter2energy.wordpress.com/2013/02/22/wells-to-wheels-electric-car-efficiency/
  51. Eberhard , M. and Tarpenning , M. 2006
  52. Thomas , C. Fuel Cell and Battery Electric Vehicles Compared International Journal of Hydrogen Energy 34 2009 6005 6020 10.1016/j.ijhydene.2009.06.003
  53. Li , M. , Zhang , X. , and Li , G. A Comparative Assessment of Battery and Fuel Cell Electric Vehicles Using a Well-to-Wheel Analysis Energy 94 2016 693 704 10.1016/j.energy.2015.11.023
  54. Wu , Y. , Wang , M.Q. , Sharer , P.B. , and Rousseau , A. Well-to-Wheels Results of Energy Use, Greenhouse Gas Emissions, and Criteria Air Pollutant Emissions of Selected Vehicle/Fuel Systems SAE Technical Paper 2006-01-0377 2006 https://doi.org/10.4271/2006-01-0377
  55. Mehrdad , E. , Yimin , G. , and Ali , E. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles 3rd Boca Raton, FL CRC Press 2012 9780429504884
  56. U.S EPA 2022 https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
  57. TransportPolicy.net 2020 https://www.transportpolicy.net/standard/us-vehicle-definitions/
  58. Sovran , G. , Sorvan , G. , Blaser , D. , and Blaser , S. A Contribution to Understanding Automotive Fuel Economy and Its Limits SAE Technical Paper 2003-01-2070 2003 https://doi.org/10.4271/2003-01-2070
  59. Montesinos-Miracle , D. and Ruiz-Bassols , T. Regenerative Braking in Electric Scooters European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) Warsaw, Poland 2017
  60. U.S. Department of Energy 2020 http://www.fueleconomy.gov/feg/atv-ev.shtml
  61. Sovran , G. The Impact of Regenerative Braking on the Powertrain-Delivered Energy Required for Vehicle Propulsion SAE Technical Paper 2011-01-0891 2011 https://doi.org/10.4271/2011-01-0891
  62. Yong , J.Y. , Ramachandaramurthy , V.K. , Tan , K.M. , and Mithulananthan , N. A Review on the State-of-the-Art Technologies of Electric Vehicle, Its Impacts and Prospects Renewable and Sustainable Energy Reviews 49 2015 365 385 10.1016/j.rser.2015.04.130
  63. Ruiz , V. , Pfrang , A. , Kriston , A. , Omar , N. et al. A Review of International Abuse Testing Standards and Regulations for Lithium Ion Batteries in Electric and Hybrid Electric Vehicles Renewable and Sustainable Energy Reviews 81 2018 1427 1452 10.1016/j.rser.2017.05.195
  64. Cano , Z.P. , Banham , D. , Ye , S. , Hintennach , A. et al. Batteries and Fuel Cells for Emerging Electric Vehicle Markets Nature Energy 3 4 2018 279 289 10.1038/ s41560-018-0108-1
  65. Meister , P. , Jia , H. , Li , J. , Kloepsch , R. et al. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency Chemistry of Materials 28 20 2016 7203 7217 10.1021/acs.chemmater.6b02895
  66. Battery University 2021 https://batteryuniversity.com/article/bu-205-types-of-lithium-ion
  67. Safoutin , M. , Cherry , J. , McDonald , J. , and Lee , S. Effect of Current and SOC on Round-Trip Energy Efficiency of a Lithium-Iron Phosphate (LiFePO 4 ) Battery Pack SAE Technical Paper 2015-01-1186 2015 https://doi.org/10.4271/2015-01-1186
  68. Genovese , A. , Ortenzi , F. , and Villante , C. On the Energy Efficiency of Quick DC Vehicle Battery Charging World Electric Vehicle Journal 7 2015 570 576 10.3390/wevj7040570
  69. Geepower 2020 https://geebattery.com/battery/3-2v-500ah-lithium-iron-phosphate-prismatic-cells
  70. Orion BMS 2021 https://www.orionbms.com/manuals/pdf/operationalmanual.pdf
  71. Stuart , T.A. and Zhu , W. Fast Equalization for Large Lithium-Ion Batteries IEEE Aerospace and Electronic Systems Magazine 24 7 2009 27 31 10.1109/OCEANS.2008.5152122
  72. Robert , R. 2015 2022 http://edge.rit.edu/edge/P18262/public/Research%20Documents/4_Ricardo_BMS_systems_comparison_2014%20rev2.pdf
  73. Wu , Z. , Ling , R. , and Tang , R. Dynamic Battery Equalization with Energy and Time Efficiency for Electric Vehicles Energy 141 2017 937 948 10.1016/j.energy.2017.09.129
  74. Sarrafan , K. , Muttaqi , K.M. , and Sutanto , D. Real-Time State-of-Charge Tracking Embedded in the Advanced Driver Assistance System of Electric Vehicles IEEE Transactions on Intelligent Vehicles 5 3 2020 497 507 10.1109/TIV.2020.2973551
  75. 2021 https://docs.rs-online.com/5495/A700000006667112.pdf
  76. William , T. 2020 https://www.transportenvironment.org/sites/te/files/publications/01%202020%20Draft%20TE%20Infrastructure%20Report%20Final.pdf
  77. Stengert , K. On-Board 22 kW Fast Charger ‘NLG6’ World Electric Vehicle Symposium and Exhibition (EVS27) 2013 Barcelona, Spain 2013 1 11 10.1109/EVS.2013.6914854
  78. Abby , B. , Lommele , S. , Schayowitz , A. , and Klotz , E. 2020 https://www.nrel.gov/docs/fy20osti/77508.pdf
  79. Level 2 or Level 3 2021 https://www.metroev.ca/blog/level-2-or-level-3-what-are-the-best-electric-vehicle-chargers
  80. Trentadue , G. , Lucas , A. , Otura , M. , Pliakostathis , K. et al. Evaluation of Fast Charging Efficiency under Extreme Temperatures Energies 11 8 2018 1937 10.3390/en11081937
  81. BatterySpace.com 2020 https://www.batteryspace.com/smartchargerforlifepo4batterypacks.aspx
  82. Shyamasis , D. , Chandana , S. , and Anirudh , R. 2019
  83. De Almeida , A.T. , Ferreira , F.J. , and Baoming , G. Beyond Induction Motors—Technology Trends to Move up Efficiency IEEE Transactions on Industry Applications 50 3 2013 2103 2114 10.1109/TIA.2013.2288425
  84. Gilbert , A.M. 2020 www.energy.wsu.edu/Documents/EEFactsheet-Motors-Dec22.pdf
  85. Elaphe 2020 https://in-wheel.com/en/solutions/direct-drive-in-wheel-motors/
  86. Ziehl-Abegg 2022 https://www.ziehl-abegg.com/en-us/products/in-wheel-hub-drive
  87. Youtube 2016 https://www.youtube.com/watch?v=36H9BVeMYMI&t=214s
  88. Spanoudakis , P. , Tsourveloudis , N.C. , Doitsidis , L. , and Karapidakis , E.S. Experimental Research of Transmissions on Electric Vehicles’ Energy Consumption Energies 12 3 2019 388 10.3390/en12030388
  89. Bikes2fold & Bikes2load 2020 http://www.bikes2fold.com/images/twike-infoenweb.pdf
  90. Chester , R.K. and Berto , F. The Mechanical Efficiency of Bicycle Derailleur and Hub-Gear Transmissions Human Power: The Technical Journal of the IHVA 52 2001 3 7
  91. Casteel , E.A. and Archibald , M. A Study on the Efficiency of Bicycle Hub Gears ASME 2013 International Mechanical Engineering Congress and Exposition San Diego, CA 10.1115/IMECE2013-64507
  92. Hofman , T. and Dai , C. Energy Efficiency Analysis and Comparison of Transmission Technologies for an Electric Vehicle 2010 IEEE Vehicle Power and Propulsion Conference (VPPC) Lille, France 2010 1 6 10.1109/VPPC.2010.5729082
  93. Metromatics 2020 https://metromatics.com.au/electric-vehicle-real-drive-tests/
  94. Wikipedia 2022 https://en.wikipedia.org/wiki/Automobiledragcoefficient
  95. Hucho , W. and Sovran , G. Aerodynamics of Road Vehicles 2nd Warrendale, PA SAE International 1993 978-0-7680-7977-7
  96. Sovran , G. Revisiting the Formulas for Tractive and Braking Energy on the EPA Driving Schedules SAE Int. J. Passeng. Cars - Mech. Syst. 6 1 2013 269 282 https://doi.org/10.4271/2013-01-0766
  97. Tim , B. 2012 https://www.energy.gov/sites/prod/files/2014/03/f10/ape006burress2012p.pdf
  98. Nissan Leaf Model 2011 2020 https://www.nissanpartsdeal.com/
  99. Lee , J. and Nelson , D.J. Rotating Inertia Impact on Propulsion and Regenerative Braking for Electric Motor Driven Vehicles 2005 IEEE Vehicle Power and Propulsion Conference Chicago, IL 2005 10.1109/VPPC.2005.1554575
  100. Torres , D. and Heath , P. 2015
  101. Jones , W.D. Putting Electricity Where the Rubber Meets the Road IEEE Spectrum 44 7 2007 18 20 10.1109/MSPEC.2007.4286550
  102. Watts , A. , Vallance , A. , Whitehead , A. , Hilton , C. et al. The Technology and Economics of In-Wheel Motors SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 3 2 2010 37 57 https://doi.org/10.4271/2010-01-2307
  103. Maslov , B. , Pyntikov , A. , and Pavlov , K. 2005
  104. Huang , X. and Wang , J. Model Predictive Regenerative Braking Control for Lightweight Electric Vehicles with In-Wheel Motors Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226 9 2012 1220 1232 10.1177/0954407012440934
  105. Zetterstrom , S. Electromechanical Steering, Suspension, Drive and Brake Modules 56th Vehicular Technology Conference Vancouver, BC, Canada 2002 3 1856 1863 10.1109/VETECF.2002.1040538
  106. Argonne 2019 https://greet.es.anl.gov/
  107. Brinkman , N. , Wang , M. , Weber , T. , and Darlington , T. 2005
  108. Worldbank 2014 https://data.worldbank.org/indicator/EG.ELC.LOSS.ZS?end=2014&start=1997
  109. U.S. Department of Energy 2020 http://www.fueleconomy.gov/feg/atv.shtml
  110. Mark , M. 2020 https://www.osti.gov/servlets/purl/1306086
  111. Christian , B. 2020 https://www.elektormagazine.com/news/cng-motor-design-achieves-high-efficiency
  112. Shete , K. Influence of Automotive Air Conditioning Load on Fuel Economy of IC Engine Vehicles International Journal of Scientific & Engineering Research 6 8 2015 1367 1372
  113. Allen Byrne , J. 2020 https://www.eepowersolutions.com/switch-mode-technology/
  114. Kim , B. 2013 https://www.controleng.com/articles/variable-frequency-drive-configuration-high-efficiency-operation-and-permanent-magnet-motors/
  115. Rafajdus , P. , Peniak , A. , Diko , M. , Makarovic , J. et al. Efficiency and Losses Analysis in Switched Reluctance Motors for Electric Vehicles Aegean Conference on Electrical Machines & Power Electronics (ACEMP), Turkey, 2015 2015 705 710 10.1109/OPTIM.2015.7426966
  116. Bo , Z. , Di , W. , MinYi , Z. , Nong , Z. et al. Electric Vehicle Energy Predictive Optimal Control by V2I Communication Advances in Mechanical Engineering 11 2 2019 1 16 10.1177/1687814018821523

Cited By