This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Emission Control of Nitrogen Oxides—Current Status and Future Challenges

Journal Article
13-02-02-0008
ISSN: 2640-642X, e-ISSN: 2640-6438
Published September 07, 2021 by SAE International in United States
Emission Control of Nitrogen Oxides—Current Status and Future Challenges
Sector:
Citation: Daya, R., "Emission Control of Nitrogen Oxides—Current Status and Future Challenges," SAE J. STEEP 2(2):121-139, 2021, https://doi.org/10.4271/13-02-02-0008.
Language: English

References

  1. Olivier , J.G. , Van Aardenne , J.A. , Dentener , F.J. , Pagliari , V. et al. Recent Trends in Global Greenhouse Gas Emissions: Regional Trends 1970-2000 and Spatial Distribution of Key Sources in 2000 Environmental Sciences 2 2-3 2005 81 99
  2. Zeldvich , Y.B. The Oxidation of Nitrogen in Combustion and Explosions Journal of Acta Physicochimica 21 1946 577
  3. Williams , A. , Pourkashanian , M. , Jones , J.M. , and Rowlands , L. A Review of NO x Formation and Reduction Mechanisms in Combustion Systems, with Particular Reference to Coal Journal of the Institute of Energy 70 484 1997 102 113
  4. Soussana , J.F. , Allard , V. , Pilegaard , K. , Ambus , P. et al. Full Accounting of the Greenhouse Gas (CO 2 , N 2 O, CH 4 ) Budget of Nine European Grassland Sites Agriculture, Ecosystems & Environment 121 1-2 2007 121 134
  5. Lee , S.D. Nitrogen Oxides and Their Effects on Health Ann Arbor, MI Ann Arbor Science 1980
  6. Health effects of transportation-related air pollution http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.3284&rep=rep1&type=pdf 2020
  7. Technology Feasibility for Model Year 2024 Heavy-Duty Diesel Vehicles in Meeting Lower NOx Standards http://www.meca.org/resources/MECA_MY_2024_HD_Low_NOx_Report_061019.pdf 2020
  8. Timeline of Ozone National Ambient Air Quality Standards (NAAQS) https://www.epa.gov/ground-level-ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs 2020
  9. Bachmann , J. Will the Circle be Unbroken: A History of the US National Ambient Air Quality Standards Journal of the Air & Waste Management Association 57 6 2007 652 697
  10. Olivier , J.G.J. , Bouwman , A.F. , Van der Hoek , K.W. , and Berdowski , J.J.M. Global Air Emission Inventories for Anthropogenic Sources of NOx, NH 3 and N 2 O in 1990 Environmental Pollution 102 1 1998 135 148
  11. Nitrogen Oxide (NOx) Pollution http://www.icopal-noxite.co.uk/nox-problem/nox-pollution.aspx 2020
  12. Wang , G. , Bai , S. , and Ogden , J.M. Identifying Contributions of On-Road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data Transportation Research Part D: Transport and Environment 14 3 2009 168 179
  13. Shahbazi , H. , Reyhanian , M. , Hosseini , V. , and Afshin , H. The Relative Contributions of Mobile Sources to Air Pollutant Emissions in Tehran, Iran: An Emission Inventory Approach Emission Control Science and Technology 2 1 2016 44 56
  14. Hao , J. , Wu , Y. , Fu , L. , He , D. et al. Source Contributions to Ambient Concentrations of CO and NO x in the Urban Area of Beijing Journal of Environmental Science and Health, Part A 36 2 2001 215 228
  15. Périlhon , C. , Alkadee , D. , Descombes , G. , and Lacour , S. Life Cycle Assessment Applied to Electricity Generation from Renewable Biomass Energy Procedia 18 2012 165 176
  16. Anenberg , S. , Miller , J.O.S.H.U.A. , Henze , D.A.V.E.N. , and Minjares , R. 2019
  17. Heavy-Duty Low NOx : Meetings & Workshops https://ww2.arb.ca.gov/our-work/programs/heavy-duty-low-nox/heavy-duty-low-nox-meetings-workshops 2020
  18. Impacts and mitigation of excess diesel NOx emissions in 11 major vehicle markets https://theicct.org/publications/impacts-and-mitigation-excess-diesel-nox-emissions-11-major-vehicle-markets 2020
  19. Mondt , J.R. Cleaner Cars: The History and Technology of Emission Control since the 1960s Warrendale, PA Society of Automotive Engineers 2000
  20. Zafonte , M. and Sabatier , P. Short-Term versus Long-Term Coalitions in the Policy Process: Automotive Pollution Control, 1963-1989 Policy Studies Journal 32 1 2004 75 107
  21. Mori , K. Worldwide Trends in Heavy-Duty Diesel Engine Exhaust Emission Legislation and Compliance Technologies SAE Technical Paper 970753 1997 https://doi.org/10.4271/970753
  22. Lowell , D. and Kamakaté , F. X 2012
  23. Impacts and mitigation of excess diesel NOx emissions in 11 major vehicle markets https://www.energy.gov/sites/prod/files/2014/03/f9/2004_deer_moser.pdf 2020
  24. Nova , I. and Tronconi , E. Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts 5 New York Springer 2014
  25. Quiros , D.C. , Thiruvengadam , A. , Pradhan , S. , Besch , M. et al. Real-World Emissions From Modern Heavy-Duty Diesel, Natural Gas, and Hybrid Diesel Trucks Operating along Major California Freight Corridors Emission Control Science and Technology 2 3 2016 156 172
  26. Posada , F. , Badshah , H. , and Rodriguez , F. x 2020
  27. Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Technical Paper 2020-01-0352 2020 https://doi.org/10.4271/2020-01-0352
  28. Badshah , H. , Posada , F. , and Muncrief , H. x 2019
  29. Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Adv. & Curr. Prac. in Mobility 1 2 2019 734 761 https://doi.org/10.4271/2019-01-0314
  30. CARB adopts HD Low NOx Omnibus rule, updates At-Berth regulation https://dieselnet.com/news/2020/08carb2.php 2020
  31. Proposed Heavy-Duty Engine and Vehicle Omnibus Regulation https://ww3.arb.ca.gov/board/books/2020/082720/20-8-2pres.pdf 2020
  32. Facts about the Low NOx Heavy-Duty Omnibus Regulation https://ww2.arb.ca.gov/sites/default/files/classic/msprog/hdlownox/files/HD_NOx_Omnibus_Fact_Sheet.pdf 2020
  33. Demuynck , J. , Favre , C. , Bosteels , D. , Randlshofer , G. et al. Integrated Diesel System Achieving Ultra-Low Urban and Motorway NOx Emissions on the Road Proceedings of the 40th International Vienna Motor Symposium Vienna, Austria 2019 15 17
  34. Hooftman , N. , Messagie , M. , Van Mierlo , J. , and Coosemans , T. A Review of the European Passenger Car Regulations—Real Driving Emissions vs Local Air Quality Renewable and Sustainable Energy Reviews 86 2018 1 21
  35. CLEPA Position Paper on Euro 7/VII https://clepa.eu/mediaroom/clepa-position-paper-on-euro-7-vii/ 2020
  36. Valin , L.C. , Russell , A.R. , and Cohen , R.C. Variations of OH Radical in an Urban Plume Inferred from NO 2 Column Measurements Geophysical Research Letters 40 9 2013 1856 1860
  37. Laughner , J.L. and Cohen , R.C. Direct Observation of Changing NOx Lifetime in North American Cities Science 366 6466 2019 723 727
  38. Thangaraja , J. and Kannan , C. Effect of Exhaust Gas Recirculation on Advanced Diesel Combustion and Alternate Fuels—A Review Applied Energy 180 2016 169 184
  39. Ma , T.T.H. Engine with Cylinder Deactivation 2000
  40. Rodríguez , F. and Posada , F. 2019
  41. Pallotti , P. , Torella , E. , New , J. , Criddle , M. et al. Application of an Electric Boosting System to a Small, Four-Cylinder S.I. Engine SAE Technical Paper 2003-32-0039 2003 https://doi.org/10.4271/2003-32-0039
  42. Coscia , C.M. Closed Loop Fast Idle Control System 1976
  43. Wüst , M. , Krüger , M. , Naber , D. , Cross , L. et al. Operating Strategy for Optimized CO 2 and NO x Emissions of Diesel-Engine Mild-Hybrid Vehicles 15. Internationales Stuttgarter Symposium Wiesbaden Springer Vieweg 2015 93 111
  44. Honardar , S. , Busch , H. , Schnorbus , T. , Severin , C. et al. Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty SAE Technical Paper 2011-24-0176 2011 https://doi.org/10.4271/2011-24-0176
  45. Prucka , M.J. Development of an Engine Stop/Start at Idle System SAE Technical Paper 2005-01-0069 2005 https://doi.org/10.4271/2005-01-0069
  46. Sellnau , M. and Rask , E. Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance SAE Transactions 112 2003 135 151
  47. Pachiannan , T. , Zhong , W. , Rajkumar , S. , He , Z. et al. A Literature Review of Fuel Effects on Performance and Emission Characteristics of Low-Temperature Combustion Strategies Applied Energy 251 2019 113380
  48. Patil , S. , Ghazi , A. , Redon , F. , Sharp , C. et al. Cold Start HD FTP Test Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Rapid Exhaust Enthalpy Rise to Achieve Ultra Low NOx SAE Technical Paper 2018-01-1378 2018 https://doi.org/10.4271/2018-01-1378
  49. Arnold , S. , Groskreutz , M. , Shahed , S.M. , and Slupski , K. Advanced Variable Geometry Turbocharger for Diesel Engine Applications SAE Technical Paper 2002-01-0161 2002 https://doi.org/10.4271/2002-01-0161
  50. Hountalas , D.T. , Mavropoulos , G.C. , Zannis , T.C. , and Mamalis , S.D. Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines SAE Technical Paper 2006-01-1414 2006 https://doi.org/10.4271/2006-01-1414
  51. Krishnan , S.R. , Srinivasan , K.K. , Singh , S. , Bell , S.R. et al. Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines J. Eng. Gas Turbines Power 126 3 2004 665 671
  52. Kovar , O. and Nording , T. Air Gap-Insulated Exhaust Manifold 2001
  53. Neely , G.D. , Sharp , C. , and Rao , S. CARB Low NOx Stage 3 Program-Modified Engine Calibration and Hardware Evaluations SAE Technical Paper 2020-01-0318 2020 https://doi.org/10.4271/2020-01-0318
  54. Takada , Y. , Ueki , S. , and Saito , A. Investigation into Fuel Economy and NOx Emissions of Light Duty Hybrid Truck in Real Traffic Conditions SAE Technical Paper 2005-01-0265 2005 https://doi.org/10.4271/2005-01-0265
  55. Takada , Y. , Ueki , S. , and Saito , A. Study on Fuel Economy and NO X Emissions of Medium Duty Hybrid Truck in Real Traffic Conditions SAE Technical Paper 2004-01-1086 2004 https://doi.org/10.4271/2004-01-1086
  56. Geng , W. , Lou , D. , Xu , N. , Tan , P. et al. Chassis Dynamometer and On-Road Evaluations of Emissions from a Diesel-Electric Hybrid Bus SAE Technical Paper 2017-01-0984 2017 https://doi.org/10.4271/2017-01-0984
  57. Fontaras , G. , Pistikopoulos , P. , and Samaras , Z. Experimental Evaluation of Hybrid Vehicle Fuel Economy and Pollutant Emissions over Real-World Simulation Driving Cycles Atmospheric Environment 42 18 2008 4023 4035
  58. Holmer , O. and Eriksson , L. Simultaneous Reduction of Fuel Consumption and NOx Emissions through Hybridization of a Long Haulage Truck IFAC-PapersOnLine 50 1 2017 8927 8932
  59. Teiner , P. and Schneeweiss , B. Evaluation of NOx and Fuel Consumption Reduction Potential of Parallel Diesel-Hybrid Powertrains Using Engine-in-the-Loop Simulation SAE Technical Paper 2010-32-0128 2010 https://doi.org/10.4271/2010-32-0128
  60. Nüesch , T. , Cerofolini , A. , Mancini , G. , Cavina , N. et al. Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle Energies 7 5 2014 3148 3178
  61. Ke , W. , Zhang , S. , He , X. , Wu , Y. et al. Well-to-Wheels Energy Consumption and Emissions of Electric Vehicles: Mid-Term Implications from Real-World Features and Air Pollution Control Progress Applied Energy 188 2017 367 377
  62. Lave , L.B. , Hendrickson , C.T. , and McMichael , F.C. Environmental Implications of Electric Cars Science 268 5213 1995 993 995
  63. Okui , N. Estimation of Fuel Economy and Emissions for Heavy-Duty Diesel Plug-In Hybrid Vehicle with Electrical Heating Catalyst System SAE Technical Paper 2017-01-2207 2017 https://doi.org/10.4271/2017-01-2207
  64. Gao , Z. , Deter , D. , Smith , D. , Pihl , J. et al. Engine-Aftertreatment in Closed-Loop Modeling for Heavy Duty Truck Emissions Control 1 Oak Ridge, TN Oak Ridge National Lab. (ORNL) 2019
  65. Gao , Z. , Daw , C.S. , and Chakravarthy , V.K. Simulation of Catalytic Oxidation and Selective Catalytic NOx Reduction in Lean-Exhaust Hybrid Vehicles SAE Technical Paper 2012-01-1304 2012 https://doi.org/10.4271/2012-01-1304
  66. Armor , J.N. New Catalytic Technology Commercialized in the USA during the 1980’s Applied Catalysis 78 2 1991 141 173
  67. Alkemade , U.G. and Schumann , B. Engines and Exhaust after Treatment Systems for Future Automotive Applications Solid State Ionics 177 26-32 2006 2291 2296
  68. Funabiki , M. and Yamada , T. A Study on Three Way Conversion Catalyst Thermal Deactivation and Improvement SAE Transactions 97 1988 1135 1143
  69. He , J.J. , Wang , C.X. , Zheng , T.T. , and Zhao , Y.K. Thermally Induced Deactivation and the Corresponding Strategies for Improving Durability in Automotive Three-Way Catalysts Johns. Matthey Technol. Rev 60 2016 196 203
  70. Beck , D.D. , Krueger , M.H. , and Monroe , D.R. The Impact of Sulfur on Three-Way Catalysts: Storage and Removal SAE Transactions 100 1991 386 399
  71. Kumar , S.V. , Rogalo , J. , Deeba , M. , Burk , P.L. et al. Influence of Phosphorous Poisoning on TWC Catalysts SAE Technical Paper 2003-01-3735 2003 https://doi.org/10.4271/2003-01-3735
  72. Collins , N.R. and Twigg , M.V. Three-Way Catalyst Emissions Control Technologies for Spark-Ignition Engines—Recent Trends and Future Developments Topics in Catalysis 42 1-4 2007 323 332
  73. Farrauto , R.J. and Hoke , J. Automotive Emission Control: Past, Present and Future Handbook of Green Chemistry 2010 197 221
  74. Charlton , S. , Dollmeyer , T. , and Grana , T. Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer SAE Int. J. Commer. Veh. 3 1 2010 101 110 https://doi.org/10.4271/2010-01-1934
  75. Whitacre , S.D. , Adelman , B.J. , May , M.P. , and McManus , J.G. Systems Approach to Meeting EPA 2010 Heavy- Duty Emission Standards Using a NOx Adsorber Catalyst and Diesel Particle Filter on a 15l Engine SAE Transactions 113 2004 341 350
  76. Nova , I. , Lietti , L. , and Forzatti , P. Mechanistic Aspects of the Reduction of Stored NOx over Pt-Ba/Al 2 O 3 Lean NOx Trap Systems Catalysis Today 136 1-2 2008 128 135
  77. NOx Adsorbers https://dieselnet.com/tech/cat_nox-trap.php 2020
  78. Ancimer , R. and Lebastard , O. Method and Apparatus for Regenerating NOx Adsorbers 2008
  79. Poulston , S. and Rajaram , R. NOx-trap Composition 2004
  80. Castoldi , L. , Matarrese , R. , Morandi , S. , Righini , L. et al. New Insights on the Adsorption, Thermal Decomposition and Reduction of NOx over Pt-and Ba-Based Catalysts Applied Catalysis B: Environmental 224 2018 249 263
  81. Choi , J.S. , Partridge , W.P. , and Daw , C.S. Sulfur Impact on NOx Storage, Oxygen Storage, and Ammonia Breakthrough during Cyclic Lean/Rich Operation of a Commercial Lean NOx Trap Applied Catalysis B: Environmental 77 1-2 2007 145 156
  82. Rajaram , R.R. , Chen , H.Y. , and Liu , D. Passive NOx Adsorber 2018
  83. Naseri , M. , Aydin , C. , Mulla , S. , Conway , R. et al. Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines SAE Int. J. Engines 8 3 2015 1144 1151 https://doi.org/10.4271/2015-01-0992
  84. Gu , Y. and Epling , W.S. Passive NOx Adsorber: An Overview of Catalyst Performance and Reaction Chemistry Applied Catalysis A: General 570 2019 1 14
  85. Selective Catalytic Reduction https://dieselnet.com/tech/cat_scr.php 2020
  86. Miller , W.R. , Klein , J.T. , Mueller , R. , Doelling , W. et al. The Development of Urea-SCR Technology for US Heavy Duty Trucks SAE Transactions 109 2000 81 88
  87. Lambert , C. , Hammerle , R. , McGill , R. , Khair , M. et al. Technical Advantages of Urea SCR for Light-Duty and Heavy-Duty Diesel Vehicle Applications SAE Transactions 113 2004 580 589
  88. Aatola , H. , Larmi , M. , Sarjovaara , T. , and Mikkonen , S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-Off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine SAE Int. J. Engines 1 1 2009 1251 1262 https://doi.org/10.4271/2008-01-2500
  89. Gurupatham , A. and He , Y. Architecture Design and Analysis of Diesel Engine Exhaust Aftertreatment System and Comparative Study with Close-Coupled DOC-DPF System SAE Int. J. Fuels Lubr. 1 1 2009 1387 1396 https://doi.org/10.4271/2008-01-1756
  90. Lambert , C. , Williams , S. , Carberry , B. , Koehler , E. et al. Urea SCR and CDPF System for a Tier 2 Light- Duty Truck Aachener Kolloquium Fahrzeug und Motorentechnik Aachen 2006
  91. Patchett , J.A. , Dettling , J.C. , and Przybylski , E.A. Catalyzed SCR Filter and Emission Treatment System 2007
  92. Neußer , H.J. , Kahrstedt , J. , Jelden , H. , Dorenkamp , R. et al. The EU6 Engines Based on the Modular Diesel System of Volkswagen-Innovative Exhaust Gas Purification Near the Engine for Further Minimization of NO x and CO 2 Proceedings of the 34. Internationales Wiener Motorensymposium Vienna 2013
  93. Su , C. , Brault , J. , Munnannur , A. , Liu , Z.G. et al. Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview SAE Int. J. Adv. Curr. Pract. in Mobility 1 1 2019 201 214 https://doi.org/10.4271/2019-01-0026
  94. Dahodwala , M. , Satyum , J. , Koehler , E. , Michael , F. et al. Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines SAE Int. J. Engines 11 6 2018 1109 1122 https://doi.org/10.4271/2018-01-1429
  95. Kim , C.H. , Paratore , M. , Gonze , E. , Solbrig , C. et al. Electrically Heated Catalysts for Cold-Start Emissions in Diesel Aftertreatment SAE Technical Paper 2012-01-1092 2012 https://doi.org/10.4271/2012-01-1092
  96. Daya , R. , Hoard , J. , Chanda , S. , and Singh , M. Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter SAE Int. J. Engines 9 3 2016 1696 1708 https://doi.org/10.4271/2016-01-0967
  97. Sharp , C. , Webb , C.C. , Yoon , S. , Carter , M. et al. Achieving Ultra Low NOx Emissions Levels with a 2017 Heavy-Duty on-Highway TC Diesel Engine-Comparison of Advanced Technology Approaches SAE Int. J. Engines 10 4 2017 1722 1735 https://doi.org/10.4271/2017-01-0956
  98. Zavala , B. , Sharp , C. , Neely , G. , and Rao , S. CARB Low NO X Stage 3 Program-Aftertreatment Evaluation and Down Selection SAE Technical Paper 2020-01-1402 2020 https://doi.org/10.4271/2020-01-1402
  99. Technology Solutions to Meet Future Heavy-Duty Vehicle Standards https://ww2.arb.ca.gov/sites/default/files/classic//msprog/hdlownox/files/workgroup_20190926/guest/08_meca_technology_solutions.pdf 2020
  100. Stephenson , P. Key Considerations for Feasible Low NOx Aftertreatment the ERC Symposium Madison, WI 2019
  101. Yang , L. , Sukumar , B. , Naseri , M. , Markatou , P. et al. After-Treatment Systems to Meet China NS VI, India BS VI Regulation Limits SAE Technical Paper 2017-01-0941 2017 https://doi.org/10.4271/2017-01-0941
  102. Harris , T.M. and Gardner , T. Modeling of Aftertreatment Technologies to Meet a Future HD Low-NOx Standard SAE Technical Paper 2019-01-0043 2019 https://doi.org/10.4271/2019-01-0043
  103. Praveena , V. and Martin , M.L.J. A Review on Various after Treatment Techniques to Reduce NOx Emissions in a CI Engine Journal of the Energy Institute 91 5 2018 704 720
  104. Chundru , V.R. , Johnson , J.H. , and Parker , G.G. A Modeling Study of an Advanced Ultra-Low NOx Aftertreatment System SAE Int. J. Fuels Lubr. 13 1 2020 37 60 https://doi.org/10.4271/04-13-01-0003
  105. Holmer , O. , Blomgren , F. , and Eriksson , L. Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles SAE Technical Paper 2019-01-0989 2019 https://doi.org/10.4271/2019-01-0989
  106. Hartley , R. , Tonzetich , Z. , Wright , N. , and Henry , C. Investigation into Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalyst and Surfactant SAE Technical Paper 2020-01-1316 2020 https://doi.org/10.4271/2020-01-1316
  107. Okada , Y. , Hirabayashi , H. , Sato , S. , and Inoue , H. Study on Improvement of NOx Reduction Performance at Low Temperature Using Urea Reforming Technology in Urea SCR System SAE Technical Paper 2019-01-0317 2019 https://doi.org/10.4271/2019-01-0317
  108. Johannessen , T. and Schmidt , H. System for Storing Ammonia In and Releasing Ammonia from a Stroage Material and Method for Storing and Releasing Ammonia 2010
  109. Fulks , G. , Fisher , G.B. , Rahmoeller , K. , Wu , M.C. et al. A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR SAE Technical Paper 2009-01-0907 2009 https://doi.org/10.4271/2009-01-0907
  110. Wilson , J. , Hargrave , G. , and Capper , M. ACCT Low Temperature Ammonia Delivery Using AdBlue™ the Integer Emissions Summit & AdBlue Forum Europe Munich, Germany 2019
  111. Zha , Y. , Cunningham , M. , Tang , Y. , Srinivasan , A. et al. Sustained Low Temperature NOx Reduction SAE Technical Paper 2018-01-0341 2018 https://doi.org/10.4271/2018-01-0341
  112. Iwasaki , M. and Shinjoh , H. A Comparative Study of “Standard”, “Fast” and “NO2” SCR Reactions over Fe/Zeolite Catalyst Applied Catalysis A: General 390 1-2 2010 71 77
  113. Nedyalkova , R. , Kamasamudram , K. , Currier , N.W. , Li , J. et al. Experimental Evidence of the Mechanism behind NH 3 Overconsumption during SCR over Fe-Zeolites Journal of Catalysis 299 2013 101 108
  114. Colombo , M. , Nova , I. , Tronconi , E. , Schmeißer , V. et al. NO/NO 2 /N 2 O-NH 3 SCR Reactions over a Commercial Fe-Zeolite Catalyst for Diesel Exhaust Aftertreatment: Intrinsic Kinetics and Monolith Converter Modelling Applied Catalysis B: Environmental 111 2012 106 118
  115. Heck , R.M. Catalytic Abatement of Nitrogen Oxides-Stationary Applications Catalysis Today 53 4 1999 519 523
  116. Koebel , M. , Elsener , M. , and Kleemann , M. Urea-SCR: A Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines Catalysis Today 59 3-4 2000 335 345
  117. Girard , J.W. , Montreuil , C. , Kim , J. , Cavataio , G. et al. Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets SAE Int. J. Fuels Lubr. 1 1 2009 488 494 https://doi.org/10.4271/2008-01-1029
  118. Cavataio , G. , Girard , J. , Patterson , J.E. , Montreuil , C. et al. Laboratory Testing of Urea-SCR Formulations to Meet Tier 2 Bin 5 Emissions SAE Technical Paper 2007-01-1575 2007 https://doi.org/10.4271/2007-01-1575
  119. Busca , G. , Lietti , L. , Ramis , G. , and Berti , F. Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia over Oxide Catalysts: A Review Applied Catalysis B: Environmental 18 1-2 1998 1 36
  120. Liu , Z.G. , Ottinger , N.A. , and Cremeens , C.M. Methods for Quantifying the Release of Vanadium from Engine Exhaust Aftertreatment Catalysts SAE Int. J. Engines 5 2 2012 663 671 https://doi.org/10.4271/2012-01-0887
  121. Telford , C.D. and Young , D. Catalytic Activity of Aluminosilicate Zeolites 1984
  122. Grossale , A. , Nova , I. , and Tronconi , E. Study of a Fe-Zeolite-Based System as NH 3 -SCR Catalyst for Diesel Exhaust Aftertreatment Catalysis Today 136 1-2 2008 18 27
  123. Grossale , A. , Nova , I. , Tronconi , E. , Chatterjee , D. et al. The chemistry of the NO/NO 2 -NH 3 “Fast” SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis Journal of Catalysis 256 2 2008 312 322
  124. Metkar , P.S. , Harold , M.P. , and Balakotaiah , V. Selective Catalytic Reduction of NOx on Combined Fe-and Cu-Zeolite Monolithic Catalysts: Sequential and Dual Layer Configurations Applied Catalysis B: Environmental 111 2012 67 80
  125. Paolucci , C. , Verma , A.A. , Bates , S.A. , Kispersky , V.F. et al. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13 Angewandte Chemie International Edition 53 44 2014 11828 11833
  126. Brandin , J.G. , Andersson , L.A. , and Odenbrand , C.I. Catalytic Reduction of Nitrogen Oxides on Mordenite Some Aspect on the Mechanism Catalysis Today 4 2 1989 187 203
  127. Park , J.H. , Park , H.J. , Baik , J.H. , Nam , I.S. et al. Hydrothermal Stability of CuZSM5 Catalyst in Reducing NO by NH 3 for the Urea Selective Catalytic Reduction Process Journal of Catalysis 240 1 2006 47 57
  128. Brandenberger , S. , Kröcher , O. , Tissler , A. , and Althoff , R. The Determination of the Activities of Different Iron Species in Fe-ZSM-5 for SCR of NO by NH 3 Applied Catalysis B: Environmental 95 3-4 2010 348 357
  129. Krishna , K. and Makkee , M. Preparation of Fe-ZSM-5 with Enhanced Activity and Stability for SCR of NOx Catalysis Today 114 1 2006 23 30
  130. Gao , F. , Kwak , J.H. , Szanyi , J. , and Peden , C.H. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts Topics in Catalysis 56 15-17 2013 1441 1459
  131. Luo , J.Y. , Yezerets , A. , Henry , C. , Hess , H. et al. Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts SAE Technical Paper 2012-01-1096 2012 https://doi.org/10.4271/2012-01-1096
  132. Beale , A.M. , Gao , F. , Lezcano-Gonzalez , I. , Peden , C.H. et al. Recent Advances in Automotive Catalysis for NOx Emission Control by Small-Pore Microporous Materials Chemical Society Reviews 44 20 2015 7371 7405
  133. Leistner , K. and Olsson , L. Deactivation of Cu/SAPO-34 during Low-Temperature NH 3 -SCR Applied Catalysis B: Environmental 165 2015 192 199
  134. Gao , F. and Peden , C. Recent Progress in Atomic-Level Understanding of Cu/SSZ-13 Selective Catalytic Reduction Catalysts Catalysts 8 4 2018 140
  135. Deka , U. , Lezcano-Gonzalez , I. , Weckhuysen , B.M. , and Beale , A.M. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx ACS Catalysis 3 3 2013 413 427
  136. Paolucci , C. , Parekh , A.A. , Khurana , I. , Di Iorio , J.R. et al. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites Journal of the American Chemical Society 138 18 2016 6028 6048
  137. Kwak , J.H. , Zhu , H. , Lee , J.H. , Peden , C.H. et al. Two Different Cationic Positions in Cu-SSZ-13? Chemical Communications 48 39 2012 4758 4760
  138. Deka , U. , Juhin , A. , Eilertsen , E.A. , Emerich , H. et al. Confirmation of Isolated Cu 2+ Ions in SSZ-13 Zeolite as Active Sites in NH 3 -Selective Catalytic Reduction The Journal of Physical Chemistry C 116 7 2012 4809 4818
  139. Marberger , A. , Petrov , A.W. , Steiger , P. , Elsener , M. et al. Time-Resolved Copper Speciation during Selective Catalytic Reduction of NO on Cu-SSZ-13 Nature Catalysis 1 3 2018 221
  140. Lomachenko , K.A. , Borfecchia , E. , Negri , C. , Berlier , G. et al. The Cu-CHA deNOx Catalyst in Action: Temperature-Dependent NH 3 -Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES Journal of the American Chemical Society 138 37 2016 12025 12028
  141. Gao , F. , Mei , D. , Wang , Y. , Szanyi , J. et al. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis Journal of the American Chemical Society 139 13 2017 4935 4942
  142. Paolucci , C. , Khurana , I. , Parekh , A.A. , Li , S. et al. Dynamic Multinuclear Sites Formed by Mobilized Copper Ions in NOx Selective Catalytic Reduction Science 357 6354 2017 898 903
  143. Chen , L. , Janssens , T.V. , Vennestrøm , P.N. , Jansson , J. et al. A Complete Multisite Reaction Mechanism for Low-Temperature NH 3 -SCR over Cu-CHA ACS Catalysis 10 10 2020 5646 5656
  144. Moliner , M. , Franch , C. , Palomares , E. , Grill , M. et al. Cu-SSZ-39, an Active and Hydrothermally Stable Catalyst for the Selective Catalytic Reduction of NOx Chemical Communications 48 66 2012 8264 8266
  145. Ryu , T. , Ahn , N.H. , Seo , S. , Cho , J. et al. Fully Copper-Exchanged High-Silica LTA Zeolites as Unrivaled Hydrothermally Stable NH 3 -SCR Catalysts Angewandte Chemie 129 12 2017 3304 3308
  146. Kim , P.S. , Kim , Y.J. , and Kim , C. Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control SAE Technical Paper 2019-01-0743 2019 https://doi.org/10.4271/2019-01-0743
  147. Kumar , A. , Smith , M.A. , Kamasamudram , K. , Currier , N.W. et al. Impact of Different Forms of Feed Sulfur on Small-Pore Cu-Zeolite SCR Catalyst Catalysis Today 231 2014 75 82
  148. Cheng , Y. , Lambert , C. , Kim , D.H. , Kwak , J.H. et al. The Different Impacts of SO 2 and SO 3 on Cu/Zeolite SCR Catalysts Catalysis Today 151 3-4 2010 266 270
  149. Jangjou , Y. , Do , Q. , Gu , Y. , Lim , L.G. et al. Nature of Cu Active Centers in Cu- SSZ-13 and Their Responses to SO 2 Exposure ACS Catalysis 8 2 2018 1325 1337
  150. Daya , R. , Joshi , S.Y. , Luo , J. , Dadi , R.K. et al. On Kinetic Modeling of Change in Active Sites upon Hydrothermal Aging of Cu-SSZ-13 Applied Catalysis B: Environmental 263 2020 118368
  151. Priority Survey Reports https://cleers.org/priority-survey-reports/ 2020
  152. Rao , S. , Sarlashkar , J. , Rengarajan , S. , Sharp , C. et al. A Controls Overview on Achieving Ultra-Low NO x SAE Technical Paper 2020-01-1404 2020 https://doi.org/10.4271/2020-01-1404
  153. Rauch , D. , Kubinski , D. , Cavataio , G. , Upadhyay , D. et al. Ammonia Loading Detection of Zeolite SCR Catalysts Using a Radio Frequency-Based Method SAE Int. J. Engines 8 3 2015 1126 1135 https://doi.org/10.4271/2015-01-0986
  154. McKinley , T.L. and Alleyne , A.G. A Switched, Controls-Oriented SCR Catalyst Model Using On-Line Eigenvalue Estimation SAE Technical Paper 2009-01-1284 2009 https://doi.org/10.4271/2009-01-1284
  155. Surenahalli , H.S. , Parker , G. , and Johnson , J.H. Extended Kalman Filter Estimator for NH3 Storage, NO, NO 2 and NH 3 Estimation in a SCR5 SAE Technical Paper 2013-01-1581 2013 https://doi.org/10.4271/2013-01-1581
  156. Daya , R. , Joshi , S.Y. , Dadi , R.K. , Tang , Y. et al. An Explicit Reduced-Order Model of Cu-Zeolite SCR Catalyst for Embedding in ECM Chemical Engineering Journal 413 2020 127473
  157. Priority Survey Reports https://op.europa.eu/en/publication-detail/-/publication/6f0b4522-d350-42bb-867a-519611d99b65/language-en 2020

Cited By