This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advances in Emission Regulations and Emission Control Technologies for Internal Combustion Engines

Journal Article
13-02-02-0007
ISSN: 2640-642X, e-ISSN: 2640-6438
Published September 13, 2021 by SAE International in United States
Advances in Emission Regulations and Emission Control Technologies for Internal Combustion Engines
Sector:
Citation: Liang, X., Wang, Y., Chen, Y., and Deng, S., "Advances in Emission Regulations and Emission Control Technologies for Internal Combustion Engines," SAE J. STEEP 2(2):101-119, 2021, https://doi.org/10.4271/13-02-02-0007.
Language: English

References

  1. Reitz , R.D. et al. IJER Editorial: The Future of the Internal Combustion Engine International Journal of Engine Research 21 1 2020 3 10 https://doi.org/10.1177/1468087419877990
  2. American Chemical Society 2 2020 https://www.acs.org/content/acs/en/climatescience/climatesciencenarratives/its-water-vapor-not-the-co2.html
  3. Hannah , R. and Max , R. 2 2020 https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
  4. European Parliament 2 Chatain B. Brussels European Parliament 2018
  5. He , H. and Yang , L. China’s Stage 6 Emission Standard for New Light-Duty Vehicles (Final Rule) ICCT 2017 https://theicct.org/publications/chinas-stage-6-emission-standard-new-light-duty-vehicles-final-rule
  6. Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Adv. & Curr. Prac. in Mobility 2 5 2020 2479 2507 https://doi.org/10.4271/2020-01-0352
  7. Johnson , T. and Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Engines 11 6 2018 1307 1330 https://doi.org/10.4271/2018-01-0329
  8. Saliba , G. et al. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts Environmental Science & Technology 51 11 2017 6542 6552 https://doi.org/10.1021/acs.est.6b06509
  9. Kim , Y. Development of High Efficiency Gasoline Engine with Thermal Efficiency over 43% High Efficiency IC Engine Symposium Detroit, MI 2018
  10. Sellers , R. , Osborne , R. , Cai , W. , and Wang , Y. Designing and Testing the Next Generation of High-Efficiency Gasoline Engine Achieving 45% Brake Thermal Efficiency the 28th Aachen Colloquium Automobile and Engine Technology Aachen, Germany 2019
  11. Battiston , P. 2018
  12. Atis , C. , Chowdhury , S.S. , Ayele , Y. , Stuecken , T. et al. Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-chamber Scavenging SAE Technical Paper 2020-01-1117 2020 https://doi.org/10.4271/2020-01-1117
  13. Sens , M. and Binder , E. Pre-Chamber Ignition as a Key Technology for Future Powertrain Fleets MTZ Worldwide 80 2 2019 44 51 https://doi.org/10.1007/s38313-018-0150-1
  14. Desantes , J.M. , Novella , R. , De La Morena , J. , and Pagano lng , V. Achieving Ultra-Lean Combustion Using a Pre-Chamber Spark Ignition System in a Rapid Compression-Expansion Machine SAE Technical Paper 2019-01-0236 2019 https://doi.org/10.4271/2019-01-0236
  15. Serrano , D. , Zaccardi , J.-M. , Müller , C. , Libert , C. et al. Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains SAE Int. J. Adv. & Curr. Prac. in Mobility 2 2 2020 607 622 https://doi.org/10.4271/2019-24-0104
  16. Stabinsky , M. , Albertson , W. , Tuttle , J. , Kehr , D. et al. Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine SAE Technical Paper 2007-01-1292 2007 https://doi.org/10.4271/2007-01-1292
  17. Lyu , M. , Alsulaiman , Y. , Tambasco , C. , Hall , M. et al. Effects of Injection Pressure, Intake Throttling, and Cylinder Deactivation on Fuel Consumption and Emissions for a Light Duty Diesel Engine at Idle Conditions SAE Technical Paper 2020-01-0303 2020 https://doi.org/10.4271/2020-01-0303
  18. Morris , A. and McCarthy , J. The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP SAE Technical Paper 2020-01-1407 2020 https://doi.org/10.4271/2020-01-1407
  19. Ortiz-Soto , E. , Wang , R. , Nagashima , M. , Younkins , M. et al. λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability SAE Technical Paper 2018-01-0891 2018 https://doi.org/10.4271/2018-01-0891
  20. DieselNet 2020 https://dieselnet-com.libproxy.mit.edu/news/2020/04cummins.php
  21. Adlercreutz , L. , Cronhjort , A. , Andersen , J. , and Ogink , R. Optimizing the Natural Gas Engine for CO2 Reduction SAE Technical Paper 2016-01-0875 2016 https://doi.org/10.4271/2016-01-0875
  22. Dahodwala , M. , Joshi , S. , Koehler , E. , Franke , M. et al. Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions SAE Technical Paper 2020-01-0801 2020 https://doi.org/10.4271/2020-01-0801
  23. Sihvonen , J. 2018
  24. Toyota 2020 https://global.toyota/en/detail/mail/8348091
  25. Jerome , S.M. and Sundararaj , S. Experimental Study on the Effect of Thermal Barrier Coating on Cylinder Head of a Semi-Adiabatic Diesel Engine SAE Technical Paper 2017-28-1978 2017 https://doi.org/10.4271/2017-28-1978
  26. Gosai , D.D.C. and Gillawat , A.K. Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine Coated with YSZ SAE Technical Paper 2019-28-2548 2019 https://doi.org/10.4271/2019-28-2548
  27. Andrie , M. , Kokjohn , S. , Paliwal , S. , Kamo , L.S. et al. Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines SAE Technical Paper 2019-01-0228 2019 https://doi.org/10.4271/2019-01-0228
  28. Moser , S. , O’Donnell , R. , Hoffman , M. , Jordan , E. et al. Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions SAE Technical Paper 2020-01-1140 2020 https://doi.org/10.4271/2020-01-1140
  29. Thibblin , A. and Olofsson , U. A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds SAE Technical Paper 2019-01-0929 2019 https://doi.org/10.4271/2019-01-0929
  30. Elumalai , S. , Mayakrishnan , J. , Nandagopal , S. , Raja , S. et al. Thermal Analysis and Experimental Investigations on the Effect of Thermal Barrier Coating on the Behavior of a Compression Ignition Engine Operated with Methyl Esters of Waste Cooking Oil SAE Technical Paper 2018-01-0663 2018 https://doi.org/10.4271/2018-01-0663
  31. Paik , Y. , Sahu , C.R. , Pandey , K.K. , Barik , S.K. et al. Effect of Thermal Barrier Coating on Performance and Emissions of a DI Diesel Engine SAE Technical Paper 2019-32-0526 2020 https://doi.org/10.4271/2019-32-0526
  32. Mafrici , S. Study of Friction Reduction Potential in Light-Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil SAE Technical Paper 2020-37-0006 2020 https://doi.org/10.4271/2020-37-0006
  33. Mafrici , S. , Barba , F. , and Mattis , M. Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines SAE Technical Paper 2019-24-0056 2019 https://doi.org/10.4271/2019-24-0056
  34. Whitacre , S. and Van Dam , W. Enhanced Fuel Economy Retention from an Ultra-Low Ash Heavy Duty Engine Oil SAE Technical Paper 2019-01-0732 2019 https://doi.org/10.4271/2019-01-0732
  35. Dickson , J. and Damon , K. Cummins/Peterbilt SuperTruck II 2019 Annual Merit Review Crystal City, Virginia, USA US DOE 2019
  36. Hergart , C. and Brown , M. Development and Demonstration of Advanced Engine and Vehicle Technologies for Class 8 Heavy-Duty Vehicle (SuperTruckII) 2019 Annual Merit Review Crystal City, Virginia, USA US DOE 2019
  37. Rotz , D. and Girbach , J. Improving Transportation Efficiency Through Integrated Vehicle, Engine, and Powertrain Research SuperTruck II 2019 Annual Merit Review Crystal City, Virginia,USA 2019
  38. Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Adv. & Curr. Prac. in Mobility 1 2 2019 734 761 https://doi.org/10.4271/2019-01-0314
  39. Smith , I. , Briggs , T. , Sharp , C. , and Webb , C. Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst SAE Technical Paper 2017-01-0957 2017 https://doi.org/10.4271/2017-01-0957
  40. Pauly , T. Catalyst Directions for Low NOx Emissions CLEERS Ann Arbor, MI 2018
  41. Newman , A. High Performance Heavy-Duty Catalysts for Global Challenges beyond 2020 SAE Heavy-Duty Diesel Emissions Control Symposium Göteborg, Sweden 2018
  42. Nishiyama , H. , Tanaka , Y. , Adachi , T. , Kawamura , S. et al. A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System SAE Technical Paper 2015-01-2014 2015 https://doi.org/10.4271/2015-01-2014
  43. Theis , J.R. SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance SAE Int. J. Fuels Lubr. 2 1 2009 332 341 https://doi.org/10.4271/2009-01-0901
  44. Henderson , R. , Hartley , R. , and Henry , C. Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream SAE Int. J. Adv. & Curr. Prac. in Mobility 2 3 2020 1356 1360
  45. Tan , P. , Wang , D. , Liu , Y. , Hu , Z. et al. Effects of Zeolite Structure, Cu Content, Feed Gas Space Velocity, NH3/NOx Ratio, and Sulfur Poisoning on the Performance of Zeolite-Based SCR Catalyst SAE Technical Paper 2019-01-0736 2019 https://doi.org/10.4271/2019-01-0736
  46. Xi , Y. , Ottinger , N. , Keturakis , C. , and Liu , Z.G. A Case Study of a Cu-SSZ-13 SCR Catalyst Poisoned by Real-World High Sulfur Diesel Fuel SAE Technical Paper 2020-01-1319 2020 https://doi.org/10.4271/2020-01-1319
  47. Jiang , H. , Guan , B. , Peng , X. , Wei , Y. et al. Influence of Co-Cations on the Performance and Hydrothermal Stability of Cu/SSZ-13 Catalysts SAE Technical Paper 2020-01-1317 2020 https://doi.org/10.4271/2020-01-1317
  48. Takeori , H. , Wada , K. , Matsuo , Y. , Morita , T. et al. Study of an Aftertreatment System for HLSI Lean-burn Engine SAE Technical Paper 2018-01-0945 2018 https://doi.org/10.4271/2018-01-0945
  49. Prikhodko , V.Y. Emissions Control for Lean Gasoline Engines 2019 DOE Vehicle Technologies Office Annual Merit Review Oak Ridge, TN 2019
  50. Liang , L. , Zhu , H. , Sandhu , N.S. , Purohit , D. et al. An Investigation on the Regeneration of Lean NOX Trap Using Dimethyl Ether SAE Technical Paper 2020-01-1354 2020 https://doi.org/10.4271/2020-01-1354
  51. Purohit , D. , Dev , S. , Tan , Q. , Sandhu , N. et al. An Investigation on the Regeneration of Lean NOx Trap Using Ethanol and n-Butanol SAE Technical Paper 2019-01-0737 2019 https://doi.org/10.4271/2019-01-0737
  52. Harris , T. Simulation of Aftertreatment Thermal Management Strategies for Low-Load Operation SAE Technical Paper 2020-01-0359 2020 https://doi.org/10.4271/2020-01-0359
  53. Harris , T.M. , Mc Pherson , K. , Rezaei , R. , Kovacs , D. et al. Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines SAE Technical Paper 2019-01-0984 2019 https://doi.org/10.4271/2019-01-0984
  54. M. o. E. C. Association 2019
  55. Diestelmeier , J. Meeting Emissions Limits while Improving Efficiency MTZ Worldwide 81 4 2020 60 66 https://doi.org/10.1007/s38313-020-0204-z
  56. Ji , Y. et al. Pt- and Pd-Promoted CeO2-ZrO2 for Passive NOx Adsorber Applications Industrial & Engineering Chemistry Research 56 1 2017 111 125 https://doi.org/10.1021/acs.iecr.6b03793
  57. Gu , Y. and Epling , W.S. Passive NOx Adsorber: An Overview of Catalyst Performance and Reaction Chemistry Applied Catalysis A: General 570 2019 1 14 https://doi.org/10.1016/j.apcata.2018.10.036
  58. Majewski , W.A. 2020 https://dieselnet.com/tech/cat_nox-trap.php
  59. Osborne , R. , Lane , A. , Turner , N. , and Gidney , J. Lean Gasoline Engine with Matching Aftertreatment System MTZ Worldwide 81 4 2020 40 45 https://doi.org/10.1007/s38313-020-0193-y
  60. Adelman , B. , Singh , N. , Charintranond , P. , and Manis , J. Achieving Ultra-Low NOx Tailpipe Emissions with a High Efficiency Engine SAE Technical Paper 2020-01-1403 2020 https://doi.org/10.4271/2020-01-1403
  61. M. o. E. C. Association 2020
  62. Mayer , A.C.R. 2020 https://dieselnet.com/news/2020/01vert.php
  63. Grigoratos , T. , Gustafsson , M. , Eriksson , O. , and Martini , G. Experimental Investigation of Tread Wear and Particle Emission from Tyres with Different Treadwear Marking Atmospheric Environment 182 2018 200 212 https://doi.org/10.1016/j.atmosenv.2018.03.049
  64. Vassallo , A. , Beatrice , C. , Di Blasio , G. , Belgiorno , G. et al. The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine SAE Technical Paper 2018-37-0005 2018 https://doi.org/10.4271/2018-37-0005
  65. Di Blasio , G. , Beatrice , C. , Ianniello , R. , Pesce , F. et al. Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines SAE Int. J. Adv. & Curr. Prac. in Mobility 2 2 2020 638 652 https://doi.org/10.4271/2019-24-0111
  66. Robert , D. and Roger , B. 3D Printed Piston for Heavy-Duty Diesel Engines The 2018 NDIA Ground Vehicle Systems Engineering and Technology Symposium Novi, MI 2018
  67. Belgiorno , G. , Boscolo , A. , Dileo , G. , Numidi , F. et al. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency SAE Int. J. Adv. & Curr. Prac. in Mobility 3 1 2021 672 684 https://doi.org/10.4271/2020-37-0003
  68. Eismark , J. , Andersson , M. , Christensen , M. , Karlsson , A. et al. Role of Piston Bowl Shape to Enhance Late-Cycle Soot Oxidation in Low-Swirl Diesel Combustion SAE Int. J. Engines 12 3 2019 233 249 https://doi.org/10.4271/03-12-03-0017
  69. Fitzgerald , R.P. , Svensson , K. , Martin , G. , Qi , Y. et al. Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing- Controlled Diesel Flames SAE Int. J. Engines 11 6 2018 817 833 https://doi.org/10.4271/2018-01-0238
  70. Svensson , K.I. and Martin , G.C. Ducted Fuel Injection: Effects of Stand-Off Distance and Duct Length on Soot Reduction SAE Int. J. Adv. & Curr. Prac. in Mobility 1 3 2019 1074 1083 https://doi.org/10.4271/2019-01-0545
  71. Nilsen , C.W. , Biles , D.E. , and Mueller , C.J. Using Ducted Fuel Injection to Attenuate Soot Formation in a Mixing-Controlled Compression Ignition Engine SAE Int. J. Engines 12 3 2019 309 322 https://doi.org/10.4271/03-12-03-0021
  72. Nakamura , M. and Ozawa , M. Phenomena of PM Deposition and Oxidation in the Diesel Particulate Filter SAE Technical Paper 2019-01-2288 2019 https://doi.org/10.4271/2019-01-2288
  73. Huang , H. Design and Validation of Silicon Carbide Diesel Particulate Filter with High Effective Filtration Area SAE Technical Paper 2020-01-5044 2020 https://doi.org/10.4271/2020-01-5044
  74. George , S. and Heibel , A. Next Generation Cordierite Thin Wall DPF for Improved Pressure Drop and Lifetime Pressure Drop Solution SAE Technical Paper 2016-01-0940 2016 https://doi.org/10.4271/2016-01-0940
  75. Viswanathan , S. , George , S. , Govindareddy , M. , and Heibel , A. Advanced Diesel Particulate Filter Technologies for Next Generation Exhaust Aftertreatment Systems SAE Technical Paper 2020-01-1434 2020 https://doi.org/10.4271/2020-01-1434
  76. Wang , Y. and Wong , V. Quantitative Analysis of Ash Density and Ash Distribution inside DPF Honeycomb Channels Based on X-Ray Computed Tomography SAE Technical Paper 2019-01-0979 2019 https://doi.org/10.4271/2019-01-0979
  77. Cooper , J.D. , Gladden , L.F. , Sederman , A.J. , and York , A.P.E. Magnetic Resonance Imaging of the Internal and External Hydrodynamics in Wall-Flow Particulate Filters SAE Technical Paper 2019-01-2286 2019 https://doi.org/10.4271/2019-01-2286
  78. Matsuno , M. and Kitamura , T. Direct Visualization of Soot and Ash Transport in Diesel Particulate Filters during Active Regeneration Process SAE Technical Paper 2019-01-2287 2019 https://doi.org/10.4271/2019-01-2287
  79. Igarashi , T. , Adachi , Y. , Tsumagari , I. , Sato , S. et al. Research on a DPF Regeneration Burner System for Use When Engine Is Not in Operation SAE Technical Paper 2019-01-2237 2019 https://doi.org/10.4271/2019-01-2237
  80. Prantoni , M. , Aleksandrova , S. , Medina , H. , Saul , J. et al. Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures SAE Technical Paper 2019-01-2330 2019 https://doi.org/10.4271/2019-01-2330
  81. Xia , W. , Yuan , X. , Yang , D. , Zheng , Y. et al. Design of Catalyzed Gasoline Particulate Filter (cGPF) and Investigation of Its Durability Performance Using Accelerated Engine Aging SAE Technical Paper 2019-01-0970 2019 https://doi.org/10.4271/2019-01-0970
  82. Chen , J. , He , S. , Xia , W. , Yuan , X. et al. Coated Gasoline Particulate Filter Technology Development to Meet China6 PN Regulation SAE Technical Paper 2020-01-0387 2020 https://doi.org/10.4271/2020-01-0387
  83. Yoshioka , F. , Kato , K. , Aoki , T. , Makino , M. et al. Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions SAE Technical Paper 2019-01-0980 2019 https://doi.org/10.4271/2019-01-0980
  84. Seki , C. , Watanabe , T. , Mori , T. , Furukawa , A. et al. Design of High Performance Coated GPF with 2D/3D Structure Analysis SAE Technical Paper 2019-01-0977 2019 https://doi.org/10.4271/2019-01-0977
  85. Liu , X. , Szente , J. , Pakko , J. , Lambert , C. et al. Using Artificial Ash to Improve GPF Performance at Zero Mileage SAE Technical Paper 2019-01-0974 2019 https://doi.org/10.4271/2019-01-0974
  86. Zhang , R. , Howard , K. , Kirkman , P. , Browne , D. et al. A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test SAE Technical Paper 2019-01-0299 2019 https://doi.org/10.4271/2019-01-0299
  87. Van Nieuwstadt , M. , Shah , A. , Serban , E. , and Martin , D. Regeneration Strategies for Gasoline Particulate Filters SAE Technical Paper 2019-01-0969 2019 https://doi.org/10.4271/2019-01-0969
  88. Adam , F. , Olfert , J. , Wong , K.-F. , Kunert , S. et al. Effect of Engine-Out Soot Emissions and the Frequency of Regeneration on Gasoline Particulate Filter Efficiency SAE Technical Paper 2020-01-1431 2020 https://doi.org/10.4271/2020-01-1431
  89. Di Iorio , S. , Catapano , F. , Sementa , P. , Vaglieco , B.M. et al. Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure SAE Technical Paper 2020-01-0396 2020 https://doi.org/10.4271/2020-01-0396
  90. Kalghatgi , G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Applied Energy 225 2018 965 974 https://doi.org/10.1016/j.apenergy.2018.05.076
  91. Martini , G. Scientific Evidence on Vehicle’s Emissions Stakeholder Event: Preparing for the Future European Emission Standards for Light and Heavy Duty Vehicles Brussels 2018
  92. Dornoff , J. The Long Way to Clean Air: What Future Emissions Standards Shall Address Stakeholder Event: Preparing for the Future European Emission Standards for Light and Heavy Duty Vehicles Brussels 2018 https://ec.europa.eu/docsroom/documents/32164
  93. Rodríguez , F. and Posada , F. 2019
  94. California Air Resources Proposed Heavy-Duty Useful Life and Step 2 Warranty Amendments Heavy-Duty Low NOx Program Workshop Diamond Bar, California, USA 2019
  95. Sharif , P.M. et al. International Regulation of Vehicle Emissions Control Rules and Its Influence on Academic Engine Development Experimental Study and Vehicle Manufacturing IOP Conference Series: Materials Science and Engineering 469 2019 012070 https://doi.org/10.1088/1757-899x/469/1/012070

Cited By