This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 2: Compression Ratio and Piston Bowl Geometry Effects

Journal Article
13-02-01-0004
ISSN: 2640-642X, e-ISSN: 2640-6438
Published March 11, 2021 by SAE International in United States
Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 2: Compression Ratio and Piston Bowl Geometry Effects
Sector:
Citation: Zhang, Y., Cho, K., and Sellnau, M., "Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition—Part 2: Compression Ratio and Piston Bowl Geometry Effects," SAE J. STEEP 2(1):59-78, 2021, https://doi.org/10.4271/13-02-01-0004.
Language: English

References

  1. Kalghatgi , G. , Risberg , P. , and Ångström , H. Advantages of Fuels with High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion SAE Technical Paper 2006-01-3385 2006 https://doi.org/10.4271/2006-01-3385
  2. Kalghatgi , G. , Risberg , P. , and Ångström , H. Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel SAE Technical Paper 2007-01-0006 2007 https://doi.org/10.4271/2007-01-0006
  3. Kalghatgi , G. , Hildingsson , L. , and Johansson , B. Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels J. Eng. Gas Turbines Power 132 9 2010 https://doi.org/10.1115/1.4000602
  4. Ra , Y. , Loeper , P. , Reitz , R. , Andrie , M. et al. Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime SAE Int. J. Engines 4 1 1412 1430 2011 https://doi.org/10.4271/2011-01-1182
  5. Chang , J. , Kalghatgi , G. , Amer , A. , Adomeit , P. et al. Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission SAE Int. J. Engines 6 1 101 119 2013 https://doi.org/10.4271/2013-01-0267
  6. Nevin , R.M. , Sun , Y. , Gonzalez D , M.A. , and Reitz , R.D. PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine SAE Technical Paper 2007-01-0903 2007 https://doi.org/10.4271/2007-01-0903
  7. De Ojeda , W. , Zoldak , P. , Espinosa , R. , and Kumar , R. Development of a Fuel Injection Strategy for Partially Premixed Compression Ignition SAE Int. J. Engines 2 1 1473 1488 2009 https://doi.org/10.4271/2009-01-1527
  8. Inagaki , K. , Mizuta , J. , Fuyuto , T. , Hashizume , T. et al. Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows SAE Technical Paper 2011-01-1393 2011 https://doi.org/10.4271/2011-01-1393
  9. Sellnau , M. , Sinnamon , J. , Hoyer , K. , and Husted , H. Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-Like Efficiency with Low CO2 Emissions SAE Int. J. Engines 4 1 2010 2022 2011 https://doi.org/10.4271/2011-01-1386
  10. Sellnau , M. , Foster , M. , Hoyer , K. , Moore , W. et al. Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine SAE Int. J. Engines 7 2 835 851 2014 https://doi.org/10.4271/2014-01-1300
  11. Sellnau , M. , Moore , W. , Sinnamon , J. , Hoyer , K. et al. GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions SAE Int. J. Engines 8 2 775 790 2015 https://doi.org/10.4271/2015-01-0834
  12. Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions SAE Int. J. Engines 9 2 1002 1020 2016 https://doi.org/10.4271/2016-01-0760
  13. Sellnau , M. , Hoyer , K. , Moore , W. , Foster , M. et al. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions SAE Technical Paper 2018-01-0901 2018 https://doi.org/10.4271/2018-01-0901
  14. Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition SAE Technical Paper 2019-01-1154 2019 https://doi.org/10.4271/2019-01-1154
  15. Kolodziej , C. , Sellnau , M. , Cho , K. , and Cleary , D. Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels SAE Int. J. Engines 9 2 979 1001 2016 https://doi.org/10.4271/2016-01-0759
  16. Manente , V. , Zander , C. , Johansson , B. , Tunestal , P. et al. An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion SAE Technical Paper 2010-01-2198 2010 https://doi.org/10.4271/2010-01-2198
  17. Leermakers , C. , Bakker , P. , Somers , L. , de Goey , L. et al. Commercial Naphtha Blends for Partially Premixed Combustion SAE Int. J. Fuels Lubr. 6 1 199 216 2013 https://doi.org/10.4271/2013-01-1681
  18. Ciatti , S. , Johnson , M. , Das Adhikary , B. , Reitz , R. et al. Efficiency and Emissions Performance of Multizone Stratified Compression Ignition Using Different Octane Fuels SAE Technical Paper 2013-01-0263 2013 https://doi.org/10.4271/2013-01-0263
  19. Paz , J. , Staaden , D. , and Kokjohn , S. Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load SAE Technical Paper 2018-01-0898 2018 https://doi.org/10.4271/2018-01-0898
  20. Zhang , Y. , Pei , Y. , Engineer , N. , Cho , K. et al. CFD-Guided Combustion Strategy Development for a Higher Reactivity Gasoline in a Light-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2017-01-0740 2017 https://doi.org/10.4271/2017-01-0740
  21. Cung , K. and Ciatti , S. A Study of Injection Strategy to Achieve High Load Points for Gasoline Compression Ignition (GCI) Operation ASME 2017 Internal Combustion Engine Division Fall Conference 2017 https://doi.org/10.1115/ICEF2017-3625
  22. Splitter , D. , Wissink , M. , Kokjohn , S. , and Reitz , R. Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency SAE Technical Paper 2012-01-0383 2012 https://doi.org/10.4271/2012-01-0383
  23. Hanson , R. , Curran , S. , Wagner , R. , Kokjohn , S. et al. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine SAE Technical Paper 2012-01-0380 2012 https://doi.org/10.4271/2012-01-0380
  24. Depsey , A. , Walker , N. , and Reitz , R. Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel SAE Technical Paper 2012-01-0380 2012 https://doi.org/10.4271/2012-01-0380
  25. Zhang , Y. , Pei , Y. , Tang , M. , and Traver , M. 2019 https://doi.org/10.1115/ICEF2019-7155
  26. Fridriksson , H. , Tuner , M. , Andersson , O. , Sunden , B. et al. Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine SAE Technical Paper 2014-01-1141 2012 https://doi.org/10.4271/2014-01-1141
  27. Genzale , C. , Reitz , R. , and Musculus , M. Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine SAE Technical Paper 2008-01-1330 2012 https://doi.org/10.4271/2008-01-1330
  28. Styron , J. , Baldwin , B. , Fulton , B. , Ives , D. et al. Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development SAE Technical Paper 2011-01-0415 2011 https://doi.org/10.4271/2011-01-0415
  29. Kurtz , E.M. and Styron , J. An Assessment of Two Piston Bowl Concepts in a Medium-Duty Diesel Engine SAE Int. J. Engines 5 2 344 352 2012 https://doi.org/10.4271/2012-01-0423
  30. Kogo , T. , Hamamura , Y. , Nakatani , K. , Toda , T. et al. High Efficiency Diesel Engine with Low Heat Loss Combustion Concept - Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GDFTV Engine SAE Technical Paper 2016-01-0658 2016 https://doi.org/10.4271/2016-01-0658
  31. Funayama , Y. , Nakajima , H. , and Shimokawa , K. A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance SAE Technical Paper 2016-01-0722 2016 https://doi.org/10.4271/2016-01-0722
  32. Yoo , D. , Kim , D. , Jung , W. , Kim , N. et al. Optimization of Diesel Combustion System for Reducing PM to Meet Tier4-Final Emission Regulation without Diesel Particulate Filter SAE Technical Paper 2013-01-2538 2013 https://doi.org/10.4271/2013-01-2538
  33. Dolak , J.G. , Shi , Y. , and Reitz , R.D. A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load SAE Technical Paper 2010-01-1263 2010 https://doi.org/10.4271/2010-01-1263
  34. Lutz , T. and Modiyani , R. Brake Thermal Efficiency Improvements of a Commercially Based Diesel Engine Modified for Operation on JP 8 Fuel SAE Technical Paper 2011-01-0120 2011 https://doi.org/10.4271/2011-01-0120
  35. Zhang , Y. , Kumar , P. , Pei , Y. , Traver , M. et al. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 https://doi.org/10.4271/2018-01-0226
  36. Zha , K. , Busch , S. , Warey , A. , Peterson , R. et al. A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry SAE Int. J. Engines 11 6 783 804 2018 https://doi.org/10.4271/2018-01-0230
  37. Perini , F. , Busch , S. , Zha , K. , Reitz , R. et al. Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine SAE Technical Paper 2019-24-0167 2019 https://doi.org/10.4271/2019-24-0167
  38. Cho , K. , Zhang , Y. , Sellnau , M. , Levy , R. et al. Investigation on Combining Partially Premixed Compression Ignition and Diffusion Combustion for Gasoline Compression Ignition - Part 1: Fuel Reactivity and Injection Strategy Effects SAE Int. J. Sustain. Transport., Energy, Environ., Policy 2020
  39. U.S. EPA https://www.epa.gov/vehicle-and-fuel-emissions-testing/benchmarking-advanced-low-emission-light-duty-vehicle-technology
  40. Richards , K.J. , Senecal , P.K. , and Pomraning , E. 2017
  41. Liu , Y. , Jia , M. , Xie , M. , and Pang , B. Enhancement on a Skeletal Kinetics Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology Energy & Fuels 26 7069 7083 2012 https://doi.org/10.1021/ef301242b
  42. Golovitchev , V. http://www.tfd.chalmers.se/~valeri/MECH.html
  43. Storey , J. , Lewis , S. , Moses-DeBusk , M. , Connatser , R. et al. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel SAE Int. J. Engines 10 4 1454 1464 2017 https://doi.org/10.4271/2017-01-0747
  44. Uyehara , O. A Method to Estimate H 2 in Engine Exhaust and Factors that Affect NO X and Particulate in Diesel Engine Exhaust SAE Technical Paper 910732 1991 https://doi.org/10.4271/910732
  45. Choi , D. , Jung , H. , Chi , Y. , and Joo , S. Diesel/Gasoline Dual Fuel Powered Combustion System based on Diesel Compression Ignition Triggered Ignition Control SAE Technical Paper 2013-01-1718 2013 https://doi.org/10.4271/2013-01-1718

Cited By