This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Consumption Simulation for Connected and Automated Vehicles: Eco-driving Benefits versus Automation Loads

Journal Article
12-06-01-0002
ISSN: 2574-0741, e-ISSN: 2574-075X
Published May 09, 2022 by SAE International in United States
Energy Consumption Simulation for Connected and Automated Vehicles:
                    Eco-driving Benefits versus Automation Loads
Sector:
Citation: He, X., Kim, H., Ma, R., Wallington, T. et al., "Energy Consumption Simulation for Connected and Automated Vehicles: Eco-driving Benefits versus Automation Loads," SAE Intl. J CAV 6(1):5-18, 2023, https://doi.org/10.4271/12-06-01-0002.
Language: English

References

  1. Sperling , D. Three Revolutions—Steering Automated, Shared, and Electric Vehicles to a Better Future Washington, DC Island Press/Center for Resource Economics 2018
  2. Society of Automotive Engineers 2018 https://www.sae.org/standards/content/j3016_201806/
  3. Michel , P. , Karbowski , D. , and Rousseau , A. Impact of Connectivity and Automation on Vehicle Energy Use SAE Technical Paper 2016-01-0152 2016 https://doi.org/10.4271/2016-01-0152
  4. Kim , N. , Karbowski , D. , and Rousseau , A. A Modeling Framework for Connectivity and Automation Co-simulation SAE Technical Paper 2018-01-0607 2018 https://doi.org/10.4271/2018-01-0607
  5. Iliev , S. , Rask , E. , Stutenberg , K. , and Duoba , M. Eco-Driving Strategies for Different Powertrain Types and Scenarios SAE Int. J. Adv. & Curr. Prac. in Mobility 2 2 2020 945 954 https://doi.org/10.4271/2019-01-2608
  6. Wu , C. , Zhao , G. , and Ou , B. A Fuel Economy Optimization System with Applications in Vehicles with Human Drivers and Autonomous Vehicles Transp. Res. Part D: Transp. Environ. 16 7 2011 515 524
  7. Wu , G. , Boriboonsomsin , K. , Xia , H. , and Barth , M. Supplementary Benefits from Partial Vehicle Automation in an Ecoapproach and Departure Application at Signalized Intersections Transp. Res. Rec. 2424 1 2014 66 75
  8. Stern , R.E. et al. Quantifying Air Quality Benefits Resulting from Few Autonomous Vehicles Stabilizing Traffic Transp. Res. Part D: Transp. Environ. 67 2019 351 365
  9. Berry , I.M. 2010
  10. Lin , S.-C. et al. The Architectural Implications of Autonomous Driving: Constraints and Acceleration ASPLOS 18 2018 751 766
  11. Farrington R. and Rugh J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Earth Technol. Forum Golden, CO 2000 http://www.nrel.gov/docs/fy00osti/28960.pdf
  12. Hamza , K. , Willard , J. , Chu , K.-C.C. , and Laberteaux , K.P. Modeling the Effect of Power Consumption in Automated Driving Systems on Vehicle Energy Efficiency for Real-World Driving in California Transp. Res. Rec. 2673 4 2019 339 347
  13. Gawron , J.H. , Keoleian , G.A. , De Kleine , R.D. , Wallington , T.J. et al. Deep Decarbonization from Electrified Autonomous Taxi Fleets: Life Cycle Assessment and Case Study in Austin, TX Transp. Res. Part D: Transp. Environ. 73 2019 130 141
  14. Stephens , T.S. , Gonder , J. , Chen , Y. , Lin , Z. et al. 2016 https://www.nrel.gov/docs/fy17osti/67216.pdf
  15. Kemp , N.J. , Keoleian , G.A. , He , X. , and Kasliwal , A. Life Cycle Greenhouse Gas Impacts of a Connected and Automated SUV and van Transp. Res. Part D 83 2020 102375
  16. Gawron , J.H. , Keoleian , G.A. , De Kleine , R.D. , Wallington , T.J. et al. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects Environ. Sci. Technol. 52 5 2018 3249 3256
  17. Taiebat , M. , Brown , A.L. , Safford , H.R. , Qu , S. et al. A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles Environ. Sci. Technol. 52 20 2018 11449 11465
  18. National Renewable Energy Laboratory (NREL) 2014 https://www.nrel.gov/transportation/fastsim.html
  19. Brooker , A. , Gonder , J. , Wang , L. , Wood , E. et al. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance SAE Technical Paper 2015-01-0973 2015 https://doi.org/10.4271/2015-01-0973
  20. Cars.com 2020 https://www.cars.com/research/ford-focus-2018/
  21. U.S. Environment Protection Agency (EPA) 2019 https://www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy
  22. He , X. et al. Individual Trip Chain Distributions for Passenger Cars: Implications for Market Acceptance of Battery Electric Vehicles and Energy Consumption by Plug-In Hybrid Electric Vehicles Appl. Energy 180 2016 650 660
  23. National Renewable Energy Laboratory (NREL) 2020 https://www.nrel.gov/transportation/secure-transportation-data/
  24. Ma , R. , He , X. , Zheng , Y. , Zhou , B. et al. Real-World Driving Cycles and Energy Consumption Informed by Large-Sized Vehicle Trajectory Data J. Clean. Prod. 223 2019 564 574
  25. Liu , S. , Tang , J. , Zhang , Z. , and Gaudiot , J.-L. 2017 https://arxiv.org/ftp/arxiv/papers/1702/1702.01894.pdf
  26. AutoBeat 2017 https://www.autobeatonline.com/articles/the-power-demands-of-self-driving-technology
  27. Dong , J. , Lu , C. , and Hu , L. 2018 http://publications.iowa.gov/27884/
  28. Tang , X. , Duan , Z. , Hu , X. , Pu , H. et al. Improving Ride Comfort and Fuel Economy of Connected Hybrid Electric Vehicles Based on Traffic Signals and Real Road Information IEEE Trans. Veh. Technol. 70 4 2021 3101 3112
  29. Tang , X. , Jia , T. , Hu , X. , Huang , Y. et al. Naturalistic Data-Driven Predictive Energy Management for Plug-In Hybrid Electric Vehicles IEEE Trans. Transp. Electrif. 7 2 2021 497 508

Cited By