Open Access

State-of-the-Art Sensor Models for Virtual Testing of Advanced Driver Assistance Systems/Autonomous Driving Functions

Journal Article
12-03-03-0018
ISSN: 2574-0741, e-ISSN: 2574-075X
Published October 29, 2020 by SAE International in United States
State-of-the-Art Sensor Models for Virtual Testing of Advanced Driver Assistance Systems/Autonomous Driving Functions
Sector:
Citation: Schlager, B., Muckenhuber, S., Schmidt, S., Holzer, H. et al., "State-of-the-Art Sensor Models for Virtual Testing of Advanced Driver Assistance Systems/Autonomous Driving Functions," SAE Intl. J CAV 3(3):233-261, 2020, https://doi.org/10.4271/12-03-03-0018.
Language: English

References

  1. Bundesministerium für Verkehr und digitale Infrastruktur Nov. 2015
  2. European Commission https://ec.europa.eu/transport/themes/its/road_en Mar. 2019
  3. European Commission https://ec.europa.eu/transport/themes/urban/vehicles_en May 2019
  4. European Road Transport Research Advisory Council May 2017
  5. Ulbrich , S. , Menzel , T. , Reschka , A. , Schuldt , F. et al. Definition der Begriffe Szene, Situation und Szenario für das automatisierte Fahren Fahrerassistenzworkshop Walting Sept. 2015
  6. Kalra , N. and Paddock , S.M. Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? Transportation Research Part A: Policy and Practice 94 182 193 Dec. 2016 https://doi.org/10.1016/j.tra.2016.09.010
  7. Wachenfeld , W. and Winner , H. Die Freigabe des autonomen Fahrens Berlin, Heidelberg Springer Berlin Heidelberg 2015 439 464 https://doi.org/10.1007/978-3-662-45854-9_21
  8. Winner , H. , Hakuli , S. , Lotz , F. , and Singer , C. Handbook of Driver Assistance Systems First Switzerland Springer International Publishing 2016 978-3-319-12353-0
  9. Brooks , R. A Robust Layered Control System for a Mobile Robot IEEE Journal on Robotics and Automation 2 14 23 Mar. 1986 https://doi.org/10.1109/JRA.1986.1087032
  10. Marti , E. , de Miguel , M.A. , Garcia , F. , and Perez , J. A Review of Sensor Technologies for Perception in Automated Driving IEEE Intelligent Transportation Systems Magazine 11 4 94 108 2019
  11. Ramasubramanian , K. , and Ramaiah , K. Moving from Legacy 24 GHz to State-of-the-Art 77-GHz Radar ATZelektronik Worldwide 13 46 49 June 2018 https://doi.org/10.1007/s38314-018-0029-6
  12. Utyansky , D. https://www.synopsys.com/dw/doc.php/wp/Digital_Signal_Processing_for_RADARs_CH.pdf 2018
  13. Xique , I.J. , Buller , W. , Fard , Z.B. , Dennis , E. et al. Evaluating Complementary Strengths and Weaknesses of ADAS Sensors 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall, Chicago, USA) 1 5 Aug. 2018
  14. Hecht , J. https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars 2020
  15. Druml , N. , Maksymova , I. , Thurner , T. , Van Lierop , D. et al. 1D MEMS Micro-Scanning LiDAR International Conference on Sensor Device Technologies and Applications Venice Sept. 2018
  16. Velodyne https://velodynelidar.com/products/alpha-prime/ 2020
  17. Zaarane , A. , Slimani , I. , Okaishi , W.A. , Atouf , I. et al. Distance Measurement System for Autonomous Vehicles Using Stereo Camera Array 5 100016 2020
  18. Dogˇan , S. , Temiz , M.S. , and Külür , S. Real Time Speed Estimation of Moving Vehicles from Side View Images from an Uncalibrated Video Camera Sensors (Basel, Switzerland) 10 5 4805 4824 2010
  19. Roth , E. and Calapoglu , T. Advanced Driver Assistance System Testing Using OptiX NVIDIA GTC San Jose, USA May 2012
  20. Cao , P. , Wachenfeld , W. , and Winner , H. Perception Sensor Modeling for Virtual Validation of Automated Driving it - Information Technology 57 243 251 Jan. 2015 https://doi.org/10.1515/itit-2015-0006
  21. Sievers , G. , Graf , S. , Peperhowe , M. , and Seiger , C. Simulation von Sensoren im SiL-und HiL-Umfeld ATZextra 23 22 25 July 2018 https://doi.org/10.1007/s35778-018-0038-3
  22. Muckenhuber , S. , Holzer , H. , Rübsam , J. , and Stettinger , G. Object-Based Sensor Model for Virtual Testing of ADAS/Ad Functions 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE) Graz, Austria 1 6 Nov. 2019
  23. Fang , J. , Zhou , D. , Yan , F. , Tongtong , Z. et al. Augmented LiDAR Simulator for Autonomous Driving IEEE Robotics and Automation Letters 5 2 1931 1938 2020
  24. Hanke , T. , Schaermann , A. , Geiger , M. , Weiler , K. et al. Generation and Validation of Virtual Point Cloud Data for Automated Driving Systems 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) Yokohama 1 6 Oct. 2017 https://doi.org/10.1109/ITSC.2017.8317864
  25. Hakuli , S. and Krug , M. Virtuelle Integration Handbuch Fahrerassistenzsysteme 3 Wiesbaden, Germany Springer Vieweg 2015 128 138 https://doi.org/10.1007/978-3-658-05734-3_8
  26. Stolz , M. and Nestlinger , G. Fast Generic Sensor Models for Testing Highly Automated Vehicles in Simulation Elektrotechnik und Informationstechnik 135 365 369 Aug. 2018 https://doi.org/10.1007/s00502-018-0629-0
  27. Hanke , T. , Hirsenkorn , N. , Dehlink , B. , Rauch , A. et al. Generic Architecture for Simulation of ADAS Sensors 16th International Radar Symposium (IRS) Dresden 125 130 June 2015 https://doi.org/10.1109/IRS.2015.7226306
  28. Hirsenkorn , N. , Hanke , T. , Rauch , A. , Dehlink , B. et al. A Non-Parametric Approach for Modeling Sensor Behavior 16th International Radar Symposium (IRS) Dresden 131 136 June 2015 https://doi.org/10.1109/IRS.2015.7226346
  29. Mesow , L. 2006
  30. Schuler , K. 2007
  31. Schuler , K. , Becker , D. , and Wiesbeck , W. Extraction of Virtual Scattering Centers of Vehicles by Ray-Tracing Simulations IEEE Transactions on Antennas and Propagation 56 11 3543 3551 2008 https://doi.org/10.1109/TAP.2008.2005436
  32. Bühren , M. and Yang , B. Simulation of Automotive Radar Target Lists Using a Novel Approach of Object Representation IEEE Intelligent Vehicles Symposium Tokyo 314 319 June 2006 https://doi.org/10.1109/IVS.2006.1689647
  33. Bühren , M. and Yang , B. Automotive Radar Target List Simulation Based on Reflection Center Representation of Objects Workshop on Intelligent Transportation (WIT) Hamburg, Germany 161 166 Mar. 2006 https://doi.org/10.1.1.550.9516
  34. Bühren , M. and Yang , B. A Global Motion Model for Target Tracking in Automotive Applications ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings Honolulu, USA 2 II-313 II-316 Apr. 2007 https://doi.org/10.1109/ICASSP.2007.366235
  35. Bühren , M. and Yang , B. Extension of Automotive Radar Target List Simulation to Consider Further Physical Aspects in 2007 7th International Conference on ITS Telecommunications Sophia Antipolis, France 1 6 June 2007 https://doi.org/10.1109/ITST.2007.4295847
  36. Bühren , M. and Yang , B. Initialization Procedure for Radar Target Tracking without Object Movement Constraints ITST 2007—7th International Conference on Intelligent Transport Systems Telecommunications, Proceedings Sophia Antipolis 112 117 June 2007 https://doi.org/10.1109/ITST.2007.4295845
  37. Bühren , M. and Yang , B. Simulation of Automotive Radar Target Lists Considering Clutter and Limited Resolution Proceedings of International Radar Symposium Cologne, Germany 195 200 Sept. 2007
  38. Danielsson , L. 2010
  39. Hammarstrand , L. , Lundgren , M. , and Svensson , L. Adaptive Radar Sensor Model for Tracking Structured Extended Objects IEEE Transactions on Aerospace and Electronic Systems 48 1975 1995 July 2012 https://doi.org/10.1109/TAES.2012.6237574
  40. Hammarstrand , L. , Svensson , L. , Sandblom , F. , and Sorstedt , J. Extended Object Tracking Using a Radar Resolution Model IEEE Transactions on Aerospace and Electronic Systems 48 2371 2386 July 2012 https://doi.org/10.1109/TAES.2012.6237597
  41. Cao , P. 2017
  42. Bernsteiner , S. , Magosi , Z. , Lindvai-Soos , D. , and Eichberger , A. Radarsensormodell für den virtuellen Entwicklungsprozess ATZelektronik 10 72 79 Apr. 2015
  43. Wheeler , T.A. , Holder , M. , Winner , H. , and Kochenderfer , M.J. Deep Stochastic Radar Models IEEE Intelligent Vehicles Symposium, Proceedings Los Angeles, CA 47 53 Jan. 2017 https://doi.org/10.1109/IVS.2017.7995697
  44. Li , Y. , Wang , Y. , Deng , W. , Li , X. et al. Lidar Sensor Modeling for ADAS Applications under a Virtual Driving Environment SAE Technical Paper 2016-01-1907 2016 https://doi.org/10.4271/2016-01-1907
  45. Zhao , J. , Li , Y. , Zhu , B. , Deng , W. et al. Method and Applications of Lidar Modeling for Virtual Testing of Intelligent Vehicles IEEE Transactions on Intelligent Transportation Systems 1 11 Mar. 2020 https://doi.org/10.1109/TITS.2020.2978438
  46. Hirsenkorn , N. , Subkowski , P. , Hanke , T. , Schaermann , A. et al. A Ray Launching Approach for Modeling an FMCW Radar System 18th International Radar Symposium (IRS) Prague 1 10 June 2017 https://doi.org/10.23919/IRS.2017.8008120
  47. Maier , F. , Makkapati , V. , and Horn , M. Environment Perception Simulation for Radar Stimulation in Automated Driving Function Testing Elektrotechnik und Informationstechnik 135 1 7 June 2018 https://doi.org/10.1007/s00502-018-0624-5
  48. Holder , M. , Linnhoff , C. , Rosenberger , P. , and Winner , H. The Fourier Tracing Approach for Modeling Automotive Radar Sensors 2019 20th International Radar Symposium (IRS) Ulm, Germany 1 8 June 2019
  49. Peinecke , N. , Lueken , T. , and Korn , B.R. Lidar Simulation Using Graphics Hardware Acceleration IEEE Digital Avionics Systems Conference St. Paul, MN 4-D Oct. 2008 https://doi.org/10.1109/DASC.2008.4702838
  50. OBrien , M.E. and Fouche , D.G. Simulation of 3D Laser Radar Systems Lincoln Laboratory Journal 15 37 60 Jan. 2005
  51. Wang , S. 2015
  52. Wang , S. , Heinrich , S. , Wang , M. , and Rojas , R. Shader-Based Sensor Simulation for Autonomous Car Testing 15th International IEEE Conference on Intelligent Transportation Systems Anchorage, AK 224 229 Sept. 2012 https://doi.org/10.1109/ITSC.2012.6338904
  53. Su , H. , Wang , R. , Chen , K. , and Chen , Y. A Simulation Method for Lidar of Autonomous Cars IOP Conference Series: Earth and Environmental Science 234 012055 Mar. 2019
  54. Woods , J. https://github.com/WVU-ASEL/glidar 2019
  55. Woods , J. https://angel.co/projects/58683-glidar-an-opengl-based-real-time-and-open-source-3d-sensor-simulator-for-testing-computer-vision-algorithms?src=user_profile 2019
  56. Rossmann , J. , Hempe , N. , Emde , M. , and Steil , T. A Real-Time Optical Sensor Simulation Framework for Development and Testing of Industrial and Mobile Robot Applications ROBOTIK 2012: 7th German Conference on Robotics Munich, Germany 1 6 May 2012
  57. Gschwandtner , M. 2013
  58. Gschwandtner , M. , Kwitt , R. , Uhl , A. , and Pree , W. BlenSor: Blender Sensor Simulation Toolbox Bebis , G. et al. Advances in Visual Computing Berlin, Heidelberg Springer Berlin/Heidelberg 2011 199 208 https://doi.org/10.1007/978-3-642-24031-7_20
  59. Goodin , C. , Kala , R. , Carrrillo , A. , and Liu , L.Y. Sensor Modeling for the Virtual Autonomous Navigation Environment IEEE SENSORS, Christchurch 2009 1588 1592 https://doi.org/10.1109/ICSENS.2009.5398491
  60. Bechtold , S. and Höfle , B. HELIOS: A Multi-Purpose Lidar Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3 161 168 July 2016 https://doi.org/10.5194/isprs-annals-III-3-161-2016
  61. Doria , D. https://github.com/daviddoria/SyntheticLidarScanner 2019
  62. Doria , D. A synthetic LiDAR scanner for VTK http://hdl.handle.net/10380/3125 2019
  63. Digital Imaging and Remote Sensing Laboratory at Rochester Institute of Technology www.dirsig.org/download/dirsig5/index.html#PathTracing 2019
  64. Digital Imaging and Remote Sensing Laboratory at Rochester Institute of Technology www.dirsig.org/docs/new/lidar.html 2019
  65. Schneider , S.-A. and Saad , K. Camera Behavioral Model and Testbed Setups for Image-Based ADAS Functions e & i Elektrotechnik und Informationstechnik 135 328 334 Aug. 2018 https://doi.org/10.1007/s00502-018-0622-7
  66. Wittpahl , C. , Zakour , H.B. , Lehmann , M. , and Braun , A. Realistic Image Degradation with Measured PSF Electronic Imaging, Autonomous Vehicles and Machines Jan. 2018 https://doi.org/10.2352/ISSN.2470-1173.2018.17.AVM-149
  67. Carlson , A. , Skinner , K.A. , Vasudevan , R. , and Johnson-Roberson , M. Modeling Camera Effects to Improve Visual Learning from Synthetic Data Computer Vision – ECCV 2018 Workshops Jan. 2019 https://doi.org/10.1007/978-3-030-11009-3_31
  68. Carlson , A. , Skinner , K.A. , Vasudevan , R. , and Johnson-Roberson , M. Sensor Transfer: Learning Optimal Sensor Effect Image Augmentation for Sim-to-Real Domain Adaptation IEEE Robotics and Automation Letters 4 3 2431 2438 2019 https://doi.org/10.1109/LRA.2019.2896470
  69. Whitted , T. An Improved Illumination Model for Shaded Display ACM SIGGRAPH Computer Graphics 13 14 1979
  70. Cook , R.L. , Porter , T. , and Carpenter , L. Distributed Ray Tracing ACM SIGGRAPH Computer Graphics 18 137 145 1984
  71. Permadi , F. 2019
  72. Brown , S.D. , Blevins , D.D. , and Schott , J.R. Time-Gated Topographic LIDAR Scene Simulation Proceedings of SPIE—The International Society for Optical Engineering May 2005 https://doi.org/10.1117/12.604326
  73. Verosim Solutions www.verosim-solutions.com 2019
  74. Rossmann , J. , Emde , M. , Steil , T. , and Hempe , N. Validierte sensorsimulation zur integrierten entwicklung mechatronischer systeme für zukünftige Weltraummissionen Gausmeier , G. et al. Wissenschaftsforum 2013 - Intelligente Technische Systeme, 11. Paderborner Workshop “Augmented & Virtual Reality in der Produktentstehung” 311 HNI Verlagsschriftenreihe Paderborn 219 234 HansGieselmann Druck und Medienhaus GmbH & Co. KG 2013
  75. Emde , M. and Roßmann , J. Modelling and Simulation of a Laser Scanner with Adjustable Pattern as Virtual Prototype for Future Space Missions 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS) Kota Kinabalu 191 196 Dec. 2015 https://doi.org/10.1109/AIMS.2015.83
  76. Emde , M. and Rossmann , J. Validating a Simulation of a Single Ray Based Laser Scanner Used in Mobile Robot Applications IEEE International Symposium on Robotic and Sensors Environments (ROSE) Washington, DC 55 60 Oct. 2013 https://doi.org/10.1109/ROSE.2013.6698418
  77. Khronos Group www.opengl.org 2019
  78. Rost , R.J. , Licea-Kane , B. , Ginsburg , D. , Kessenich , J.M. et al. OpenGL Shading Language Third Boston Addison-Wesley Professional 2009
  79. Open Scene Graph www.openscenegraph.org 2019
  80. Department of Computer Sciences—University of Salzburg www.blensor.org 2019
  81. Blender Foundation www.blender.org 2019
  82. Velodyne Lidar www.velodynelidar.com/hdl-64e.html 2019
  83. ibeo Automotive 2016
  84. Universität Heidelberg http://www.geog.uni-heidelberg.de/gis/helios.html 2019
  85. Gosling , J. , Joy , B. , and Steele , G.L. The Java Language Specification First Boston, MA Addison-Wesley Longman Publishing Co., Inc. 1996
  86. Martin , K. , Schroeder , W. , and Lorensen , B. www.vtk.org July 2019
  87. Blevins , D.D. , Brown , S.D. , and Schott , J.R. First-Principles Based LIDAR Simulation Environment for Scenes with Participating Mediums Proceedings of the SPIE, Laser Radar Technology and Applications XI 6214 62140 May 2006 https://doi.org/10.1117/12.665958
  88. Digital Imaging and Remote Sensing Laboratory at Rochester Institute of Technology www.dirsig.org 2019
  89. Maier , F.M. , Makkapati , V.M. , and Horn , M. Adapting Phong into a Simulation for Stimulation of Automotive Radar Sensors IEEE International Conference on Microwaves for Intelligent Mobility Munich, Germany Apr. 2018 https://doi.org/10.1109/ICMIM.2018.8443493
  90. BMWi-Project PEGASUS Scenario Description PEGASUS Symposium Wolfsburg, Germany https://www.pegasusprojekt.de/files/tmpl/PDF-Symposium/04_Scenario-Description.pdf 2019
  91. Schuldt , F. , Saust , F. , Lichte , B. , and Maurer , M. Effiziente systematische Testgenerierung für Fahrerassistenzsysteme in virtuellen Umgebungen AAET—Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für Transportmittel Braunschweig, Germany 114 134 2013

Cited By