This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned

Journal Article
12-02-04-0020
ISSN: 2574-0741, e-ISSN: 2574-075X
Published December 18, 2019 by SAE International in United States
Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned
Sector:
Citation: Wagner, S., Knoll, A., Groh, K., Kühbeck, T. et al., "Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned," SAE Intl. J CAV 2(4):263-277, 2019, https://doi.org/10.4271/12-02-04-0020.
Language: English

References

  1. Kröger , F. Das automatisierte Fahren im gesellschaftsgeschichtlichen und kulturwissenschaftlichen Kontext Autonomes Fahren Berlin, Germany Springer 2015 41 67
  2. ERTRAC - Automated Driving Roadmap Jul. 2015
  3. Prodhan , G. Mar. 2017 www.autonews.com/article/20170316/MOBILITY/170319877/bmw-says-self-driving-car-to-be-level-5-capable-by-2021
  4. Lambert , F. Mar. 2018 https://electrek.co/2018/03/11/tesla-ceo-elon-musk-self-driving-next-year/
  5. SAE International Sep. 2016
  6. ISO/DIS 26262-1 2011
  7. Wachenfeld , W. and Winner , H. Die Freigabe des Autonomen Fahrens Autonomes Fahren Berlin, Germany Springer 2015 439 464 10.1007/978-3-662-45854-9_21
  8. Schuldt , F. , Saust , F. , Lichte , B. , Maurer , M. et al. Automatisierungssysteme, Assistenzsysteme und Eingebettete Systeme Für Transportmittel, 2013
  9. Amersbach , C. and Winner , H. 8. Tagung Fahrerassistenz, 2017
  10. Eckstein , L. and Zlocki , A. Safety Potential of ADAS-Combined Methods for an Effective Evaluation 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV) Seoul, South Korea 2013
  11. 2018 https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
  12. Helmer , T. , Kompaß , K. , Wang , L. , Kühbeck , T. et al. Safety Performance Assessment of Assisted and Automated Driving in Traffic: Simulation as Knowledge Synthesis Automated Driving Cham, Switzerland Springer 2017 473 494
  13. Tatar , M. and Mauss , J. Systematic Test and Validation of Complex Embedded Systems ERTS-2014 Toulouse 2014
  14. Groh , K. , Kuehbeck , T. , Schiementz , M. , and Chibelushi , C. Towards a Scenario-Based Assessment Method for Highly Automated Driving Functions 8th Conference on Driver Assistance Munich Sep. 2017
  15. Murray-Smith , D.J. Testing and Validation of Computer Simulation Models Cham, Switzerland Springer 2015 10.1007/978-3-319-15099-4
  16. Notz , D. , Sigl , M. , Kühbeck , T. , Wagner , S. et al. Methods for Improving the Accuracy of the Virtual Assessment of Autonomous Driving Proceedings of the 8th International Conference on Connected Vehicles and Expo 2019 Graz, Austria IEEE Nov. 2019
  17. Ulbrich , S. , Menzel , T. , Reschka , A. , Schuldt , F. et al. Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on. IEEE Gran Canaria, Spain 2015 982 988
  18. Aeberhard , M. , Rauch , S. , Bahram , M. , Tanzmeister , G. et al. Experience, Results and Lessons Learned from Automated Driving on Germany’s Highways IEEE Intelligent Transportation Systems Magazine 7 1 42 57 2015
  19. Girardin , G. and Mounier , E. 2015
  20. Thomas , J. and Rojas , R. Sensor-Based Road Model Estimation for autonomous driving 2017 IEEE Intelligent Vehicles Symposium (IV) IEEE Redondo Beach, CA 2017 1764 1769
  21. Ziegler , J. , Werling , M. , and Schroder , J. Navigating Car-Like Robots in Unstructured Environments Using an Obstacle Sensitive Cost Function 2008 IEEE Intelligent Vehicles Symposium IEEE Eindhoven, The Netherlands 2008 787 791
  22. Rakowski , T. Jul. 2013
  23. Aeberhard , M. and Kaempchen , N. High-Level Sensor Data Fusion Architecture for Vehicle Surround Environment Perception Proc. 8th Int. Workshop Intell. Transp Las Vegas, NV 2011
  24. Banerjee , K. , Notz , D. , Windelen , J. , Gavarraju , S.N. et al. Online Camera LiDAR Fusion and Object Detection on Hybrid Data for Autonomous Driving 2018 IEEE Intelligent Vehicles Symposium, IV 2018 Changshu, China June 26-29, 2018 IEEE 2018
  25. Bock , T. Vehicle in the loop: Test-und Simulationsumgebung für Fahrerassistenzsysteme Göttingen, Germany Cuvillier Verlag 2008
  26. Groh , K. , Wagner , S. , Kuehbeck , T. , and Knoll , A. Simulation and its Contribution to evaluate Highly Automated Driving Functions System Safety and Verification of Automated Driving Systems & ADAS, SAE WCX 2019 Detroit SAE International Apr. 2019 11
  27. Wagner , S. , Groh , K. , Kuehbeck , T. , Doerfel , M. et al. Using Time-To-React Based on Naturalistic Traffic Object Behavior for Scenario-Based Risk Assessment of Automated Driving Proceedings of the IEEE Intelligent Vehicle Symposium 2018 Changshu, China IEEE Jun. 2018 1521 1528
  28. https://www.oxts.com/app/uploads/2017/07/RT3000-brochure-170606.pdf
  29. Dupuis , M. , Strobl , M. , and Grezlikowski , H. OpenDRIVE 2010 and Beyond-Status and Future of the de facto Standard for the Description of Road Networks Proceedings of the Driving Simulation Conference DSC Europe Paris 2010 231 242
  30. Hanke , T. Oct. 2017 https://www.hot.ei.tum.de/fileadmin/tueihot/www/Forschung/OSI_description.pdf
  31. Wagner , S. , Groh , K. , Kühbeck , T. , and Knoll , A. Towards Cross-Verification and Use of Simulation in the Assessment of Automated Driving Processings of the IEEE Intelligent Vehicle Symposium 2019 Paris, France IEEE Jun. 2019 1407 1414
  32. Hillenbrand , J. , Spieker , A.M. , and Kroschel , K. A multilevel collision mitigation approach-Its situation assessment, decision making, and performance tradeoffs IEEE Transactions on Intelligent Transportation Systems 7 4 528 540 2006
  33. Wachenfeld , W. , Junietz , P. , Wenzel , R. , and Winner , H. The Worst-Time-to-Collision Metric for Situation Identification 2016 IEEE Intelligent Vehicles Symposium (IV) Gothenburg, Sweden Jun. 2016 729 734
  34. Kessler , C. and Etemad , A. Jun. 2012
  35. Rocklage , E. , Kraft , H. , Karatas , A. , and Seewig , J. Automated Scenario Generation for Regression Testing of Autonomous Vehicles 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) Yokohama, Japan Oct. 2017 476 483
  36. Abdessalem , R. , Nejati , S. , Briand , L. , and Stifter , T. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms Proceedings—International Conference on Software Engineering Gothenburg, Sweden 2018 1016 1026
  37. Sippl , C. , Bock , F. , Wittmann , D. , Altinger , H. et al. 191 206 2016
  38. Andrews , A. , Abdelgawad , M. , and Gario , A. Towards World Model-Based Test Generation in Autonomous Systems 2015 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD) Angers, France Feb. 2015 1 12
  39. Krajewski , R. , Bock , J. , Kloeker , L. , and Eckstein , L. The High D Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems 2018 IEEE 21th International Conference on Intelligent Transportation Systems (ITSC) Maui, HI 2018
  40. Pedregosa , F. , Varoquaux , G. , Gramfort , A. , Michel , V. et al. Scikit-Learn: Machine Learning in Python Journal of Machine Learning Research 12 2825 2830 2011
  41. Anguelov , D. Feb. 2019 https://www.youtube.com/watch?v=Q0nGo2-y0xY
  42. Dobberstein , J. , Bakker , J. , Wang , L. , Vogt , T. et al. The Eclipse Working Group openPASS-An Open Source Approach to Safety Impact Assessment via Simulation 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration Detroit, MI 2017
  43. https://www.alp-lab.at/
  44. http://testfeld-a9.de/

Cited By