This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Optimal Fuzzy Models for Pneumatic Magnetorheological Suspension System on Ride Performance under Different Conditions

Journal Article
10-06-04-0028
ISSN: 2380-2162, e-ISSN: 2380-2170
Published August 23, 2022 by SAE International in United States
Effect of Optimal Fuzzy Models for Pneumatic Magnetorheological
                    Suspension System on Ride Performance under Different Conditions
Sector:
Citation: Shehata Gad, A. and El-Demerdash, S., "Effect of Optimal Fuzzy Models for Pneumatic Magnetorheological Suspension System on Ride Performance under Different Conditions," SAE Int. J. Veh. Dyn., Stab., and NVH 6(4):421-440, 2022, https://doi.org/10.4271/10-06-04-0028.
Language: English

References

  1. Fischer , D. and Sermann , R. Mechatronic Semi-active and Active Vehicle Suspensions Control Engineering Practice 12 2004 1353 1367
  2. Zong , L.-H. , Gong , X.-L. , Guo , C.-Y. , and Xuan , S.-H. Inverse Neuro-Fuzzy MR Damper Model and Its Application in Vibration Control of Vehicle Suspension System International Journal of Vehicle Mechanics and Mobility 50 7 2012 1025 1041
  3. Abdul Aziz , M. and Aminossadati , S.M. State-of-the-Art Developments of Bypass Magnetorheological (MR) Dampers: A Review Korea-Australia Rheology Journal 33 3 2021 225 249
  4. Eskandary , P.K. , Khajepour , A. , Wong , A. , and Ansari , M. Analysis and Optimization of Air Suspension System with Independent Height And Stiffness Tuning International Journal of Automotive Technology 17 2016 807 816
  5. Abid , H.J. , Chen , J. , and Nassar , A.A. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles International Scholarly Research Notices 2015 2015 1 6
  6. de Melo F.J.M.Q. , Pereira A.B. and Morais A.B. The Simulation of an Automotive Air Spring Suspension Using a Pseudo-Dynamic Procedure Applied Sciences 8 1 20 2018
  7. Nguyen , V. , Jiao , R. , and Zhang , J. Control Performance of Damping and Air Spring of Heavy Truck Air Suspension System with Optimal Fuzzy Control SAE Int. J. Veh. Dyn., Stab., and NVH 4 2 2020 179 194 https://doi.org/10.4271/10-04-02-0013
  8. Morales , A.L. , Nieto , A.J. , Chicharro , J.M. , and Pintado , P. A Semi-Active Vehicle Suspension Based on Pneumatic Springs and Magnetorheological Dampers Journal of Vibration and Control 24 4 2018 808 821
  9. Sammier , D. , Sename , O. , and Dugard , L. Skyhook and H8 Control of Semi-active Suspensions: Some Practical Aspects Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 39 2003 279 308
  10. Salem , A.M. and Oyadiji , S.O. Comparisons between Dynamic Characteristics of Pneumatic, Magnetorheological, and Hydraulic Shock Absorbers Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis Esda2012 Nantes, France 2012
  11. Gad , A. , Oraby , W. , and Metered , H. Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach SAE Technical Paper 2020-01-1082 2020 https://doi.org/10.4271/2020-01-1082
  12. Jugulkar , L.M. , Singh , S. , and Sawant , S.M. Analysis of Suspension with Variable Stiffness and Variable Damping Force for Automotive Applications Advances in Mechanical Engineering 8 5 2016 1 19
  13. Shalabi , M.E. , El-Hussieny , H. , Abouelsoud , A.A. , and Elbab , A.M.F. Control of Automotive Air-Spring Suspension System Using Z-Number Based Fuzzy System 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) Dali, China 2020
  14. Gad , A. , Mohamed , E. , and El-Demerdash , S. Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance SAE Technical Paper 2020-01-5101 2020 https://doi.org/10.4271/2020-01-5101
  15. Saadaoui , K. , Bouderah , B. , Assas , O. , and Khodja , M.A. Type-1 and Type-2 Fuzzy Sets to Control a Nonlinear Dynamic System Revue d’Intelligence Artificielle 33 1 2019 1 7
  16. Mei , L. , Zhongxing , L. , Jiwei , G. , and Xufeng , S. Study on the Fuzzy Control of Coach Air Suspension System Applied Mechanics and Materials 43 2011 57 61
  17. Woś , P. , Dindorf , R. , and Takosoglu , J. Fuzzy Controller to Control the Active Air Suspension The Archives of Automotive Engineering—Archiwum Motoryzacji 89 3 2020 75 86
  18. Bao , W.-N. , Chen , L.-P. , Zhang , Y.-Q. , and Zhao , Y.-S. Fuzzy Adaptive Sliding Mode Controller for an Air Spring Active Suspension International Journal of Automotive Technology 13 7 2012 1057 1065
  19. Qi , H. , Chen , Y. , Rakheja , S. , He , J.-H. et al. Improvement of Both Handling Stability and Ride Comfort of a Vehicle via Coupled Hydraulically Interconnected Suspension and Electronic Controlled Air Spring Proc IMechE Part D: J Automobile Engineering 234 2019 552 571
  20. Shehata Gad , A. Preview Model Predictive Control Controller for Magnetorheological Damper of Semi-Active Suspension to Improve Both Ride and Handling SAE Int. J. Veh. Dyn., Stab., and NVH 4 3 2020 305 326 https://doi.org/10.4271/10-04-03-0021
  21. Sosthene , K. , Josee , M. , and Hui , X. Fuzzy Logic Controller for Semi Active Suspension Based on Magneto-Rheological Damper International Journal of Automotive Engineering and Technologies 1 2018 38 47
  22. Sapiński , B. Fuzzy Control for MR Damper in a Driver’s Seat Suspension Journal of Theoretical and Applied Mechanics 43 1 2005 179 201
  23. Kurczyk , S. and Pawelczyk , M. Fuzzy Control for Semi-Active Vehicle Suspension Journal of Low Frequency Noise, Vibration and Active Control 32 2013 217 226
  24. Shalabi , M.E. , Fath Elbab , A.M.R. , El-Hussieny , H. , and Abouelsoud , D.A.A. Neuro-Fuzzy Volume Control for Quarter Car Air-Spring Suspension System IEEE Access 9 2021 77611 77623
  25. Xiao Qiang , S. , Long , C. , ShaoHua , W. , and Xing , X. Vehicle Height Control of Electronic Air Suspension System Based on Mixed Logical Dynamical Modelling Science China Technological Sciences 58 2015 1894 1904
  26. Yu , W.B. , Wei , L. , Pang , B. , and Li , N. Application of Self-Adjustable Fuzzy Control Algorithm in the Air Suspension of the Vehicle 2009 International Conference on Mechatronics and Automation Changchun 2009
  27. Shiao , Y. , Nguyen , Q.-A. , and Lai , C.-C. A Novel Design of Semi-Active Suspension System Using Magneto Rheological Damper on Light-Weight Vehicle Transactions of the Canadian Society for Mechanical Engineering 37 2013 723 732
  28. Xu , X. , Wang , W. , Zou , N. , Chen , L. et al. A Comparative Study of Sensor Fault Diagnosis Methods Based on Observer for ECAS System Mechanical Systems and Signal Processing 87 2016 169 183
  29. Lo , Y.-H. , Chen , R.-P. , Lee , L.-W. , Li , I.-H. et al. Design and Implementation of a Interval Type-2 Adaptive Fuzzy Controller for a Novel Pneumatic Active Suspension System 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS) Sapporo, Japan 2016
  30. Shehata Gad , A. A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling SAE Technical Paper 2021-01-5069 2021 https://doi.org/10.4271/2021-01-5069
  31. Hu , G. et al. Vibration Control of Semi-Active Suspension System with Magnetorheological Damper Based on Hyperbolic Tangent Model Advances in Mechanical Engineering 9 5 2017 1687814017694581

Cited By