This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multi-objective Methodology for Design and Environmental Analysis in the Automotive Field

Journal Article
05-15-04-0024
ISSN: 1946-3979, e-ISSN: 1946-3987
Published June 23, 2022 by SAE International in United States
Multi-objective Methodology for Design and Environmental Analysis in
                    the Automotive Field
Sector:
Citation: Antonacci, A., Del Pero, F., Baldanzini, N., and Delogu, M., "Multi-objective Methodology for Design and Environmental Analysis in the Automotive Field," SAE Int. J. Mater. Manf. 15(4):367-394, 2022, https://doi.org/10.4271/05-15-04-0024.
Language: English

References

  1. Fauzi , R.T. , Lavoie , P. , Sorelli , L. , Heidari , M.D. et al. Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment Sustainability 11 3 2019 636 https://doi.org/10.3390/su11030636
  2. Ness , B. , Urbel-Piirsalu , E. , Anderberg , S. , and Olsson , L. Categorising Tools for Sustainability Assessment Ecological Economics 60 3 2007 498 508 https://doi.org/10.1016/j.ecolecon.2006.07.023
  3. McArthur , J.W. and Rasmussen , K. Change of Pace: Accelerations and Advances during the Millennium Development Goal Era World Development 105 2018 132 143 https://doi.org/10.1016/j.worlddev.2017.12.030
  4. Sala , S. , Ciuffo , B. , and Nijkamp , P. A Systemic Framework for Sustainability Assessment Ecological Economics 119 2015 314 332 https://doi.org/10.1016/j.ecolecon.2015.09.015
  5. Leal Filho , W. , Tripathi , S.K. , Andrade Guerra , J.B.S.O.D. , Giné-Garriga , R. et al. Using the Sustainable Development Goals towards a Better Understanding of Sustainability Challenges International Journal of Sustainable Development & World Ecology 26 2019 179 190 https://doi.org/10.1080/13504509.2018.1505674
  6. Graedel , T. and Allenby , B. Industrial Ecology and the Automobile Upper Saddle River, NJ Prentice Hall 1998
  7. Mayyas , A. , Qattawi , A. , Omar , M. , and Shan , D. Design for Sustainability in Automotive Industry: A Comprehensive Review Renewable and Sustainable Energy Reviews 16 4 2012 1845 1862 https://doi.org/10.1016/j.rser.2012.01.012
  8. Witik , R.A. , Payet , J. , Michaud , V. , Ludwig , C. et al. Assessing the Life Cycle Costs and Environmental Performance of Lightweight Materials in Automobile Applications Composites Part A: Applied Science and Manufacturing 42 11 2011 1694 1709 https://doi.org/10.1016/j.compositesa.2011.07.024
  9. European Commission 2 2012
  10. Delogu , M. , Del Pero , F. , and Pierini , M. Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles Sustainability 8 11 2016 1167 https://doi.org/10.3390/su8111167
  11. Maclean , H.L. and Lave , L.B. Life Cycle Assessment of Automobile/Fuel Options Environmental Science & Technology 37 23 2003 5445 5452 https://doi.org/10.1021/es034574q
  12. Hakamada , M. , Furuta , T. , Chino , Y. , Chena , Y. et al. Life Cycle Inventory Study on Magnesium Alloy Substitution in Vehicles Energy 32 8 2007 1352 1360 https://doi.org/10.1016/j.energy.2006.10.020
  13. La Rosa , A.D. , Recca , G. , Summerscales , J. , Latteri , A. et al. Biobased versus Traditional Polymer Composites. A Life Cycle Assessment Perspective J Clean Prod 74 1 2014 135 144 https://doi.org/10.1016/j.jclepro.2014.03.017
  14. Mayyas , A.T. , Qattawi , A. , Mayyas , A.R. , and Omar , M. Quantifiable Measures of Sustainability: A Case Study of Materials Selection for Eco-Lightweight Autobodies J Clean Prod 40 2013 177 189 https://doi.org/10.1016/j.jclepro.2012.08.039
  15. Raugei , M. , Morrey , D. , Hutchinson , A. , and Winfield , P. A Coherent Life Cycle Assessment of a Range of Lightweight Strategies for Compact Vehicles J Clean Prod 108 2015 1168 1176 https://doi.org/10.1016/j.jclepro.2015.05.100
  16. Tharumarajah , A. and Koltun , P. Is There an Environmental Advantage of Using Magnesium Components for Light-Weighting Cars? J Clean Prod 15 2007 1007 1013 https://doi.org/10.1016/j.jclepro.2006.05.022
  17. Ferreira , M.B. , Salvador , R. , Barros , M.V. , Souza , J.T.D. et al. Eco-Efficiency of the Differential Ratio Change in a Heavy-Duty Vehicle and Implications for the Automotive Industry Sustainable Production and Consumption 21 2020 145 155 https://doi.org/10.1016/j.spc.2019.12.005
  18. Rödger , J.-M. , Bey , N. , Alting , L. , and Hauschild , M.Z. Life Cycle Targets Applied in Highly Automated Car Body Manufacturing—Method and Algorithm J Clean Prod 194 2018 786 799 https://doi.org/10.1016/j.jclepro.2018.04.148
  19. Simoes , C.L. , Figueiredo de Sa , R. , Ribeiro , C.J. , Bernardo , P. et al. Environmental and Economic Performance of a Car Component: Assessing New Materials, Processes and Designs J Clean Prod 118 1 2016 105 117 https://doi.org/10.1016/j.jclepro.2015.12.101
  20. Vinodh , S. and Jayakrishna , K. Environmental Impact Minimisation in an Automotive Component Using Alternative Materials and Manufacturing Processes Mater Des 32 10 2011 5082 5090 https://doi.org/10.1016/j.matdes.2011.06.025
  21. Inti , S. , Sharma , M. , and Tandon , V. An Approach for Performing Life Cycle Impact Assessment of Pavements for Evaluating Alternative Pavement Designs Procedia Engineering 145 2016 964 971 https://doi.org/10.1016/j.proeng.2016.04.125
  22. Koffler , C. and Zahller , M. 2012
  23. Lopes , P.V. , Silva , F.J.G. , Campilho , R.D.S.G. , Baptista , A. et al. Designing a Novel and Greener Truck Asphalt Container Procedia Manufacturing 38 2019 324 332 https://doi.org/10.1016/j.promfg.2020.01.042
  24. Poulikidou , S. , Jerpdal , L. , Bjorklund , A. , and Åkermo , M. Environmental Performance of Self-Reinforced Composites in Automotive Applications. Case Study on a Heavy Truck Component Mater Des 103 2016 321 329 https://doi.org/10.1016/j.matdes.2016.04.090
  25. Santos , J. , Gouveia , R.M. , and Silva , F.J.G. Designing a New Sustainable Approach to the Change for Lightweight Materials in Structural Components Used in Truck Industry J Clean Prod 164 2017 115 123 https://doi.org/10.1016/j.jclepro.2017.06.174
  26. Spreafico , C. Can TRIZ (Theory of Inventive Problem Solving) Strategies Improve Material Substitution in Eco-Design? Sustainable Production and Consumption 30 2022 889 915 https://doi.org/10.1016/j.spc.2022.01.010
  27. Kelly , J.C. , Sullivan , J.L. , Burnham , A. , and Elgowainy , A. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions Environmental Science & Technology 49 20 2015 12535 12542 https://doi.org/10.1021/acs.est.5b03192
  28. Javadi , P. , Yeganeh , B. , Abbasi , M. , and Alipourmohajer , S. Energy Assessment and Greenhouse Gas Predictions in the Automotive Manufacturing Industry in Iran Sustainable Production and Consumption 26 2021 316 330 https://doi.org/10.1016/j.spc.2020.10.014
  29. Ciacci , L. , Marselli , L. , Passarini , F. , Santini , A. et al. A Comparison among Different Automotive Shredder Residue Treatment Processes Int J Life Cycle Assess 15 2010 896 906 https://doi.org/10.1007/s11367-010-0222-1
  30. Dhingra , R. and Das , S. Life Cycle Energy and Environmental Evaluation of Downsized vs. Lightweight Material Automotive Engines J Clean Prod 85 2014 347 358 https://doi.org/10.1016/j.jclepro.2014.08.107
  31. Berzi , L. , Delogu , M. , Pierini , M. , and Romoli , F. Evaluation of the End-of-Life Performance of a Hybrid Scooter with the Application of Recyclability and Recoverability Assessment Methods Resour. Conserv. Recycl. 108 2016 140 155 https://doi.org/10.1016/j.resconrec.2016.01.013
  32. Diener , D.L. and Tillman , A.-M. Scrapping Steel Components for Recycling—Isn’t that Good Enough? Seeking Improvements in Automotive Component End-of-Life Resources, Conservation and Recycling 110 2016 48 60 https://doi.org/10.1016/j.resconrec.2016.03.001
  33. Das , S. The Life-Cycle Impacts of Aluminium Body-in-White Automotive Material J Miner Met Mater Soc 52 2000 41 44 https://doi.org/10.1007/s11837-000-0173-2
  34. Funazaki , A. , Taneda , K. , Tahara , K. , and Inaba , A. Automobile Life Cycle Assessment Issues at End-of-Life and Recycling JSAE Rev. 24 2003 381 386 https://doi.org/10.1016/S0389-4304(03)00081-X
  35. Kim , H.C. and Wallington , T.J. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model of Mass-Induced Fuel Consumption Environ Sci Technol 47 2013 14358 14366 https://doi.org/10.1021/es402954w
  36. Rousseaux , P. , Gremy-Gros , C. , Bonnin , M. , Henriel-Ricordel , C. et al. ‘Eco-Tool-Seeker’: A New and Unique Business Guide for Choosing Ecodesign Tools J Clean Prod 151 2017 546 577 https://doi.org/10.1016/j.jclepro.2017.03.089
  37. UNEP/SETAC 2011
  38. Zamagni , A. , Pesonen , H.L. , and Swarr , T. From LCA to Life Cycle Sustainability Assessment: Concept, Practice and Future Directions Int J Life Cycle Assess 18 2013 1637 1641 https://doi.org/10.1007/s11367-013-0648-3
  39. Costa , D. , Quinteiro , P. , and Dias , A.C. A Systematic Review of Life Cycle Sustainability Assessment: Current State, Methodological Challenges, and Implementation Issues Science of the Total Environment 686 2019 774 787 https://doi.org/10.1016/j.scitotenv.2019.05.435
  40. Visentin , C. , Da Silva Trentin , A.W. , Braun , A.B. , and Thomé , A. Life Cycle Sustainability Assessment: A Systematic Literature Review through the Application Perspective, Indicators, and Methodologies J Clean Prod 270 2020 122509 https://doi.org/10.1016/j.jclepro.2020.122509
  41. Aruldoss , M. , Lakshmi , T.M. , and Venkatesan , V.P. A Survey on Multi Criteria Decision Making Methods and Its Applications Am J Inf Syst 1 2013 31 43 https://doi.org/10.12691/ajis-1-1-5
  42. Onat , N.C. , Gumus , S. , Kucukvar , M. , and Tatari , O. Application of the TOPSIS and Intuitionistic Fuzzy Set Approaches for Ranking the Life Cycle Sustainability Performance of Alternative Vehicle Technologies Sustainable Production and Consumption 6 2020 12 25 http://doi.org/10.1016/j.spc.2015.12.003
  43. Wang , J.J. , Jing , Y.Y. , Zhang , C.F. , and Zhao , J.H. Review on Multi-Criteria Decision Analysis Aid in Sustainable Energy Decision-Making Renew Sustain Energy Rev 13 2009 2263 2278 https://doi.org/10.1016/j.rser.2009.06.021
  44. Rossi , M. , Germani , M. , and Zamagni , A. Review of Ecodesign Methods and Tools. Barriers and Strategies for an Effective Implementation in Industrial Companies J Clean Prod 129 2016 361 373 https://doi.org/10.1016/j.jclepro.2016.04.051
  45. Delogu , M. , Del Pero , F. , Romoli , F. , and Pierini , M. Life Cycle Assessment of a Plastic Air Intake Manifold Int J Life Cycle Assess 20 2015 1429 1443 https://doi.org/10.1007/s11367-015-0946-z
  46. Cecchel , S. , Chindamo , D. , Collotta , M. , Cornacchia , G. et al. Lightweighting in Light Commercial Vehicles: Cradle-to-Grave Life Cycle Assessment of a Safety-Relevant Component Int J Life Cycle Assess 23 2018 2043 2054 https://doi.org/10.1007/s11367-017-1433-5
  47. Sun , X. , Liu , J. , Lu , B. , Zhang , P. et al. Life Cycle Assessment-Based Selection of a Sustainable Lightweight Automotive Engine Hood Design Int J Life Cycle Assess 22 2017 1373 1383 https://doi.org/10.1007/s11367-016-1254-y
  48. Sun , X. , Meng , F. , Liu , J. , and McKechnie , J. Life Cycle Energy Use and Greenhouse Gas Emission of Lightweight Vehicle—A Body-in-White Design J Clean Prod 220 2019 1 8 https://doi.org/10.1016/j.jclepro.2019.01.225
  49. Deng , Y. , Guo , Y. , Wu , P. , and Ingarao , G. Optimal Design of Flax Fiber Reinforced Polymer Composite as a Lightweight Component for Automobiles from a Life Cycle Assessment Perspective Journal of Industrial Ecology 23 2019 986 997 https://doi.org/10.1111/jiec.12836
  50. Fassi , H.F. , Ourihi , R. , and Elahrach , K. An Integrated Method Involving Design-Manufacturing-Environment Applied in Structural Optimization Materials Today: Proceedings 38 1 2021 135 138 https://doi.org/10.1016/j.matpr.2020.06.118
  51. Ghadimi , P. , Azadni , A.H. , Yusof , N.M. , and Mat Saman , M.Z. A Weighted Fuzzy Approach for Product Sustainability Assessment: A Case Study in Automotive Industry J Clean Prod 33 2012 10 21 https://doi.org/10.1016/j.jclepro.2012.05.010
  52. Delogu , M. , Maltese , S. , Del Pero , F. , Zanchi , L. et al. Challenges for Modelling and Integrating Environmental Performances in concept Design: The Case of an Automotive Component Lightweighting International Journal of Sustainable Engineering 11 2 2018 135 148 http://doi.org/10.1080/19397038.2017.1420110
  53. Russo , D. and Matina , D. Structural Optimization and LCA for a Computer-Aided Sustainable Design Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B Chicago, IL 2012 329 338 https://doi.org/10.1115/DETC2012-70814
  54. Russo , D. and Rizzi , C. An ECO-DESIGN Approach Based on Structural Optimization in a CAD Framework Computer-Aided Design & Application 11 5 2014 579 588 http://doi.org/10.1080/16864360.2014.902691
  55. Reimer , L. , Kaluza , A. , Cerdas , F. , Meschke , J. et al. Design of Eco-Efficient Body Parts for Electric Vehicles Considering Life Cycle Environmental Information Sustainability 12 14 2020 5838 https://doi.org/10.3390/su12145838
  56. Kamalakkannan , S. and Kulatunga , A.K. Optimization of Eco-Design Decisions Using a Parametric Life Cycle Assessment Sustainable Production and Consumption 27 2021 1297 1316 https://doi.org/10.1016/j.spc.2021.03.006
  57. Ashby , M.F. Materials Selection in Mechanical Design 4th Boston Butterworth-Heinemann 2011
  58. Helton , J.C. and Davis , F.J. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems Reliability Engineering & System Safety 81 1 2003 23 69 https://doi.org/10.1016/S0951-8320(03)00058-9
  59. Viana , F.A. Things You Wanted to Know about the Latin Hypercube Design and Were Afraid to Ask Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization Albany, NY 2013
  60. 2011 https://data.europa.eu/doi/10.2788/38479
  61. Del Pero , P. , Berzi , L. , Antonacci , A. , and Delogu , M. Automotive Lightweight Design: Simulation Modeling of Mass-Related Consumption for Electric Vehicles Machines 8 3 2020 51 https://doi.org/10.3390/machines8030051
  62. Del Pero , P. , Delogu , M. , and Pierini , M. The Effect of Lightweighting in Automotive LCA Perspective: Estimation of Mass-Induced Fuel Consumption Reduction for Gasoline Turbocharged Vehicles J Clean Prod 154 2017 566 577 http://doi.org/10.1016/j.jclepro.2017.04.013
  63. Celen , A. Comparative Analysis of Normalization Procedures in TOPSIS Method: With an Application to Turkish Deposit Banking Market Informatica 25 2 2014 185 208 https://doi.org/10.15388/Informatica.2014.10
  64. Vafaei , N. , Ribeiro , R.A. , Camarinha-Matos , L.M. Normalization Techniques for Multi-Criteria Decision Making: Analytical Hierarchy Process Case Study Camarinha-Matos , L.M. , Falcão , A.J. , Vafaei , N. , Najdi , S. Technological Innovation for Cyber-Physical Systems 470 Cham Springer 2016 261 269 https://doi.org/10.1007/978-3-319-31165-4_26

Cited By