This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Machine Learning Models for Weld Quality Monitoring in Shielded Metal Arc Welding Process Using Arc Signature Features

Journal Article
05-15-04-0023
ISSN: 1946-3979, e-ISSN: 1946-3987
Published May 31, 2022 by SAE International in United States
Machine Learning Models for Weld Quality Monitoring in Shielded Metal
                    Arc Welding Process Using Arc Signature Features
Sector:
Citation: Rameshkumar, K., Vignesh, A., Gokula Chandran, P., Kirubakaran, V. et al., "Machine Learning Models for Weld Quality Monitoring in Shielded Metal Arc Welding Process Using Arc Signature Features," SAE Int. J. Mater. Manf. 15(4):347-365, 2022, https://doi.org/10.4271/05-15-04-0023.
Language: English

References

  1. Weman , K. Welding Processes Handbook Elsevier Woodhead publisher, Sawston, United Kingdom 2011
  2. Kah , P. , Suoranta , R. , and Martikainen , J. Joining of Sheet Metals Using Different Welding Processes Mechanika 2011 158 163
  3. Hughes , S.E. A Quick Guide to Welding and Weld Inspection Elsevier Woodhead publisher, Sawston, United Kingdom 2009
  4. Bestard , G.A. Online Measurements in Welding Processes Absi Alfaro , S.C. , Borek , W. and Tomiczek , B. Welding-Modern Topics IntechOpen Limited, London, SW7 2QJ, United Kingdom 2020
  5. Saini , D. and Floyd , S. Use of Sound Signature for Quality Control in Automated Welding Operations Sixth International Conference on Manufacturing Engineering: Manufacturing; a Global Perspective Australia 1995 589
  6. Tam , J. and Huissoon , J. Arc Acoustic Feedback in GMA Welding 7th International Conference on Trends in Welding Research Pine Mountain, GA 2006 677 682
  7. Pal , K. , Bhattacharya , S. , and Pal , S.K. Prediction of Metal Deposition from Arc Sound and Weld Temperature Signatures in Pulsed MIG Welding The International Journal of Advanced Manufacturing Technology 45 11 2009 1113 1130
  8. Pal , K. and Pal , S.K. Sensor-Based Characterization of Weld Quality and Process Stability Monitoring in Pulsed MIG Welding Journal of Mechatronics and Intelligent Manufacturing 2 1/2 2011 5
  9. Wang , J.F. , Yu , H.D. , Qian , Y.Z. , Yang , R.Z. et al. Feature Extraction in Welding Penetration Monitoring with Arc Sound Signals Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225 9 2011 1683 1691
  10. Lv , N. , Zhong , J. , Chen , H. , Lin , T. et al. Real-Time Control of Welding Penetration during Robotic GTAW Dynamical Process by Audio Sensing of Arc Length The International Journal of Advanced Manufacturing Technology 74 1-4 2014 235 249
  11. Sumesh , A. , Rameshkumar , K. , Mohandas , K. , and Shyam Babu , R. Use of Machine Learning Algorithms for Weld Quality Monitoring Using Acoustic Signature Procedia Computer Science 50 2015 316 322
  12. Dong , X. , Wen , G. , Ren , W. , Luan , R. et al. Frequency Selection for Online Identification of Welding Penetration through Audible Sound 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) Honolulu, HI 2017 326 331
  13. Soundararajan , V. , Atharifar , H. , and Kovacevic , R. Monitoring and Processing the Acoustic Emission Signals from the Friction-Stir-Welding Process Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 10 2006 1673 1685
  14. Rajaprakash , B.M. , Suresha , C.N. , and Upadhya , S. Application of Acoustic Emission Technique for Online Monitoring of Friction Stir Welding Process during Welding of AA6061-T6 Aluminum Alloy TMS 2014: 143rd Annual Meeting & Exhibition Cham Springer 2014 731 740
  15. Meng , X. , Papaelias , M. , and Melton , G. Spectral Analysis for Crack Detection during TIG Welding Using Acoustic Emission Techniques Insight-Non-Destructive Testing and Condition Monitoring 62 8 2020 478 483
  16. Zhang , L. , Basantes-Defaz , A.C. , Ozevin , D. , and Indacochea , E. Real-Time Monitoring of Welding Process Using Air-Coupled Ultrasonics and Acoustic Emission The International Journal of Advanced Manufacturing Technology 101 5 2019 1623 1634
  17. Asif , K. , Zhang , L. , Sybil Derrible , J. , Indacochea , E. et al. Machine Learning Model to Predict Welding Quality Using Air-Coupled Acoustic Emission and Weld Inputs Journal of Intelligent Manufacturing 33 2020 881 895
  18. Rehfeldt , D. and Polte , T. Three Systems for Process Monitoring, Process Analysis and Quality Determination in Arc Welding JOM-International Conference 9 1999 277 283
  19. Rehfeldt , D. and Rehfeldt , M.D. Statistical Evaluation of GMAW Process Disturbances with Signature Analysis through Analysator HANNOVER J Chem Pharm Sci 2015 2015 274 279
  20. Adolfsson , S. , Bahrami , A. , Bolmsjö , G. , and Claesson , I. Online Quality Monitoring in Short-Circuit Gas Metal Arc Welding Welding Journal 78 1999 59-s
  21. Quinn , T.P. , Smith , C. , McCowan , C.N. , Blachowiak , E. et al. Arc Sensing for Defects in Constant-Voltage Gas Metal Arc Welding Weld Welding Journal 78 1999 322-s 328-s
  22. Wu , C.S. , Hu , Q.X. , Sun , J.S. , Polte , T. et al. Intelligent Monitoring and Recognition of the Short-Circuiting Gas—Metal Arc Welding Process Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 218 9 2004 1145 1151
  23. Wu , C.S. , Polte , T. , and Rehfeldt , D. Gas Metal Arc Welding Process Monitoring and Quality Evaluation Using Neural Networks Science and Technology of Welding and Joining 5 5 2000 324 328
  24. Wu , C.S. , Polte , T. , and Rehfeldt , D. A Fuzzy Logic System for Process Monitoring and Quality Evaluation in GMAW Welding Journal 80 2 2001 33
  25. Golob , M. and Koves , A. Fuzzy Logic Based Quality Monitoring in Short-Circuit Gas Metal Arc Welding International Journal of Materials and Product Technology 29 1-4 2007 228 243
  26. Zhang , Z. , Chen , X. , Chen , H. , Zhong , J. et al. Online Welding Quality Monitoring Based on Feature Extraction of Arc Voltage Signal The International Journal of Advanced Manufacturing Technology 70 9-12 2014 1661 1671
  27. Sumesh , A. , Rameshkumar , K. , Raja , A. , Mohandas , K. et al. Establishing Correlation between Current and Voltage Signatures of the Arc and Weld Defects in GMAW Process Arabian Journal for Science and Engineering 42 11 2017 4649 4665
  28. Sumesh , A. , Nair , B.B. , Rameshkumar , K. , Santhakumari , A. et al. Decision Tree-Based Weld Defect Classification Using Current and Voltage Signatures in GMAW Process Materials Today: Proceedings 5 2 2018 8354 8363
  29. Thekkuden , D.T. , Santhakumari , A. , Sumesh , A. , Mourad , A.-H.I. et al. Instant Detection of Porosity in Gas Metal Arc Welding by Using Probability Density Distribution and Control Chart The International Journal of Advanced Manufacturing Technology 95 9 2018 4583 4606
  30. Kumar , V. , Parida , M.K. , and Verma , O.P. Evaluation of Power Sources and the Effect of Varying Current in SMAW Process International Journal of System Assurance Engineering and Management 11 2019 455 465
  31. Kumar , V. , Albert , S.K. , and Chandrasekhar , N. Signal Processing Approach on Weld Data for Evaluation of Arc Welding Electrodes Using Probability Density Distributions Measurement 133 2019 23 32
  32. Shin , S. , Jin , C. , Jiyoung , Y. , and Rhee , S. Real-Time Detection of Weld Defects for Automated Welding Process Base on Deep Neural Network Metals 10 3 2020 389
  33. Kumar , V. , Albert , S.K. , and Chanderasekhar , N. Development of Programmable System on Chip-Based Weld Monitoring System for Quality Analysis of Arc Welding Process International Journal of Computer Integrated Manufacturing 33 9 2020 925 935
  34. Breiman , L. , Friedman , J.H. , Olshen , R.A. , and Stone , C.J. Classification and Regression Trees Monterey, CA Wadsworth and Brooks/Cole 1984
  35. Wu , X. and Kumar , V. The Top Ten Algorithms in Data Mining CRC Press London, United Kingdom 2009
  36. Cortes , C. and Vapnik , V. Support-Vector Networks Machine Learning 20 3 1995 273 297
  37. Soman , K.P. , Loganathan , R. , and Ajay , V. Machine Learning with SVM and Other Kernel Methods PHI Learning Pvt. Ltd. New Delhi, India 2009

Cited By