This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling of Temperature Swing Effect in Silica-Reinforced Porous Anodized Aluminum-Based Thermal Barrier Coating

Journal Article
05-14-03-0019
ISSN: 1946-3979, e-ISSN: 1946-3987
Published April 09, 2021 by SAE International in United States
Modeling of Temperature Swing Effect in Silica-Reinforced Porous Anodized Aluminum-Based Thermal Barrier Coating
Sector:
Citation: Gulhane, A., Zhang, J., Yang, X., Lu, Z. et al., "Modeling of Temperature Swing Effect in Silica-Reinforced Porous Anodized Aluminum-Based Thermal Barrier Coating," SAE Int. J. Mater. Manf. 14(3):283-292, 2021, https://doi.org/10.4271/05-14-03-0019.
Language: English

References

  1. Kundu , P. , Scarcelli , R. , Som , S. , Ickes , A. et al. Modeling Heat Loss through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations Using a Conjugate Heat Transfer Model SAE Technical Paper 2016-01-2235 2016 https://doi.org/10.4271/2016-01-2235
  2. Borman , G. and Nishiwaki , K. Internal-Combustion Engine Heat Transfer Progress in Energy and Combustion Science 13 1 1 46 1987
  3. Inagaki , K. et al. Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Sprays with Restricted In-Cylinder Swirl and Squish Flows—Proposal of Combustion Concept and Validation of Fundamental Engine Performance Using Single-Cylinder Engine Transactions of Society of Automotive Engineers of Japan 42 1 219 224 2011
  4. Kikusato , A. , Jin , K. , and Daisho , Y. A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall SAE Int. J. Engines 7 1 96 105 2014 https://doi.org/10.4271/2014-01-1073
  5. Matsuoka , H. et al. Structure and Performance of Heat Insulated Natural Gas Engine JSAE Review 18 4 377 384 1997
  6. Kikusato , A. , Terahata , K. , Jin , K. , and Daisho , Y. A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock SAE Int. J. Engines 7 1 87 95 2014 https://doi.org/10.4271/2014-01-1066
  7. Fukui , K. , Wakisaka , Y. , Nishikawa , K. , Hattori , Y. et al. Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept SAE Technical Paper 2016-01-0675 2016 https://doi.org/10.4271/2016-01-0675
  8. Kawaguchi , A. , Iguma , H. , Yamashita , H. , Takada , N. et al. Thermo-Swing Wall Insulation Technology; - A Novel Heat Loss Reduction Approach on Engine Combustion Chamber SAE Technical Paper 2016-01-2333 2016 https://doi.org/10.4271/2016-01-2333
  9. Kosaka , H. , Wakisaka , Y. , Nomura , Y. , Hotta , Y. et al. Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat SAE Int. J. Engines 6 1 142 149 2013 https://doi.org/10.4271/2013-01-0274
  10. Ogden , T. Thermal Conductivity of Hard Anodized Coatings on Aluminum 23rd Joint Propulsion Conference San Diego, CA, U.S.A 1987
  11. Lee , W. and Park , S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures Chemical Reviews 114 15 7487 7556 2014
  12. Lee , W. Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications Losic , D. and Santos , A. Nanoporous Alumina: Fabrication, Structure, Properties and Applications Cham Springer International Publishing 2015 107 153
  13. Buijnsters , J.G. et al. Surface Wettability of Macroporous Anodized Aluminum Oxide ACS Applied Materials & Interfaces 5 8 3224 3233 2013
  14. Wakisaka , Y. , Inayoshi , M. , Fukui , K. , Kosaka , H. et al. Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines SAE Int. J. Engines 9 3 1449 1459 2016 https://doi.org/10.4271/2016-01-0661
  15. Somhorst , J. , Uczak De Goes , W. , Oevermann , M. , and Bovo , M. Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine SAE Technical Paper 2019-24-0062 2019 https://doi.org/10.4271/2019-24-0062
  16. Taibani , A. , Visaria , M. , Phalke , V. , Alankar , A. et al. Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines SAE Int. J. Engines 12 2 117 127 2019 https://doi.org/10.4271/03-12-02-0009
  17. Abad , B. , Maiz , J. , and Martin-Gonzalez , M. Rules to Determine Thermal Conductivity and Density of Anodic Aluminum Oxide (AAO) Membranes The Journal of Physical Chemistry C 120 10 5361 5370 2016
  18. Shah , R.K. and Sekulic , D.P. Fundamentals of Heat Exchanger Design Hoboken, NJ Wiley 2003
  19. Al Mohtar , A. et al. Thickness-Dependent Thermal Properties of Amorphous Insulating Thin Films Measured by Photoreflectance Microscopy Thin Solid Films 642 157 162 2017
  20. Grove , A.S. Physics and Technology of Semiconductor Devices New York Wiley 1967
  21. 2 http://www.memsnet.org/material/silicondioxidesio2film/ 2020
  22. Ekström , M. et al. Evaluation of Internal Thermal Barrier Coatings for Exhaust Manifolds Surface and Coatings Technology 272 198 212 2015

Cited By