Mechanical Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Modules without and with Electrolyte under Quasi-Static and Dynamic In-Plane Compressive Loading Conditions

Journal Article
05-12-03-0014
ISSN: 1946-3979, e-ISSN: 1946-3987
Published July 02, 2019 by SAE International in United States
Mechanical Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Modules without and with Electrolyte under Quasi-Static and Dynamic In-Plane Compressive Loading Conditions
Sector:
Citation: Kim, E., Sung, S., Hong, S., and Pan, J., "Mechanical Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Modules without and with Electrolyte under Quasi-Static and Dynamic In-Plane Compressive Loading Conditions," SAE Int. J. Mater. Manf. 12(3):179-195, 2019, https://doi.org/10.4271/05-12-03-0014.
Language: English

References

  1. Zhu, J., Wierzbicki, T., and Li, W. , “A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries,” Journal of Power Sources 378:153-168, 2018, doi:10.1016/j.jpowsour.2017.12.034.
  2. Lai, W.-J., Ali, M.Y., and Pan, J. , “Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells under Compressive Loading Conditions,” Journal of Power Sources 245:609-623, 2014, doi:10.1016/j.jpowsour.2013.06.134.
  3. Lai, W.-J., Ali, M.Y., and Pan, J. , “Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Modules under Various Loading Conditions,” Journal of Power Sources 248:789-808, 2014, doi:10.1016/j.jpowsour.2013.09.128.
  4. Lai, W.-J., Sung, S.-J., Hong, S.H., Ali, M.Y., Pan, J., Hong, S.-T., Tyan, T., and Barbat, S. , “Effects of Impact Velocity on Compressive Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Cells,” Presented at SAE International Congress and Exposition, Detroit, MI, April 8-10, 2014.
  5. Xu, J., Liu, B., Wang, X., and Hu, D. , “Computational Model of 18650 Lithium-Ion Battery with Coupled Strain Rate and SOC Dependencies,” Applied Energy 172:180-189, 2016, doi:10.1016/j.apenergy.2016.03.108.
  6. Cannarella, J., Liu, X., Leng, C.Z., Sinko, P.D. et al. , “Mechanical Properties of a Battery Separator under Compression and Tension,” Journal of The Electrochemical Society 161(11):F3117-F3122, 2014, doi:10.1149/2.0191411jes.
  7. Gor, G.Y., Cannarella, J., Prévost, J.H., and Arnold, C.B. , “A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates,” Journal of The Electrochemical Society 161(11):F3065-F3071, 2014, doi:10.1149/2.0111411jes.
  8. Kisters, T., Sahraei, E., and Wierzbicki, T. , “Dynamic Impact Tests on Lithium-Ion Cells,” International Journal of Impact Engineering 108:205-216, 2017, doi:10.1016/j.ijimpeng.2017.04.025.
  9. Dixon, B., Mason, A., and Sahraei, E. , “Effects of Electrolyte, Loading Rate and Location of Indentation on Mechanical Integrity of Li-Ion Pouch Cells,” Journal of Power Sources 396:412-420, 2018, doi:10.1016/ j.jpowsour.2018.06.042.
  10. Tsutsui, W., Siegmund, T., Parab, N.D., Liao, H. et al. , “State-of-Charge and Deformation-Rate Dependent Mechanical Behavior of Electrochemical Cells,” Experimental Mechanics 58:627-632, 2018, doi:10.1007/s11340-017-0282-2.
  11. Sheidaei, A., Xiao, X., Huang, X., and Hitt, J. , “Mechanical Behavior of a Battery Separator in Electrolyte Solutions,” Journal of Power Sources 196:8728-8734, 2011, doi:10.1016/j.jpowsour.2011.06.026.
  12. Young, W.C. and Budynas, R.G. , Roark’s Formulas for Stress and Strain Seventh Edition (New York: McGraw-Hill, 2001). ISBN:0-07-072542-X.
  13. Timoshenko, S.P., Gere, J.M. , “Theory of Elastic Stability,” Second Edition, McGraw-Hill, New York, ISBN-10: 0-486-47207-8, 1961
  14. Amodeo, C.M., Ali, M.Y., and Pan, J. , “Computational Models for Simulations of Lithium-Ion Battery Modules under Quasi-Static and Dynamic Constrained Compression Tests,” International Journal of Crashworthiness 22:1-14, 2017, doi:10.1080/13588265.2016.1213489.

Cited By