This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

Journal Article
05-11-02-0012
ISSN: 1946-3979, e-ISSN: 1946-3987
Published May 07, 2018 by SAE International in United States
Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models
Sector:
Citation: Ziada, Y. and Yang, J., "Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models," SAE Int. J. Mater. Manf. 11(2):113-122, 2018, https://doi.org/10.4271/05-11-02-0012.
Language: English

References

  1. Arrazola, P., Oezel, T., Umbrello, D., Davies, M. et al., “Recent Advances in Modelling of Metal Machining Processes,” Ann. CIRP 62:695-718, 2013, doi:10.1016/j.cirp.2013.05.006.
  2. Guo, Y. and Liu, C., “Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes,” J. Manuf. Sci. Eng 124(1):1-9, 2002, doi:10.1115/1.1413775.
  3. Uhlmann, E., Schulenburg, M.G.v.d., and Zettier, R., “Finite Element Modeling and Cutting Simulation of Inconel 718,” Ann. CIRP 56(1):61-64, 2007, doi:10.1016/j.cirp.2007.05.017.
  4. Umbrello, D., “Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy,” J. Mat. Proc. Tech. 196(1-3):79-87, 2008, doi:10.1016/j.jmatprotec.2007.05.007.
  5. Ceretti, E., Fallboehmer, P., Wu, W., and Altan, T., “Application of 2D FEM to Chip Formation in Orthogonal Cutting,” J. Mat. Proc. Tech. 59(1-2):169-180, 1996, doi:10.1016/0924-0136(96)02296-0.
  6. Oezel, T., Llanos, I., Soriano, J., and Arrazol, P.J., “3D Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of FE Software Predictions,” Machining Science and Technology 15(1):21-46, 2011, doi:10.1080/10910344.2011.557950.
  7. Umbrello, D., Hua, J., and Shivpuri, R., “Hardness-Based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI 52100 Bearing Steel,” Materials Science Engineering 374:90-100, 2004, doi:10.1016/j.msea.2004.01.012.
  8. Calamaz, M., Coupard, D., and Girot, F., “A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V,” International Journal of Machine Tools and Manufacture 48(3-4):275-288, 2008, doi:10.1016/j.ijmachtools.2007.10.014.
  9. Altintas, Y., Kersting, K., Biermann, D., Budak, E. et al., “Virtual Process Systems for Part Machining Operations,” Ann. CIRP 63(2):585-605, 2014, doi:10.1016/j.cirp.2014.05.007.
  10. Thepsonthi, T. and Özel, T., “3-D Finite Element Process Simulation of Micro-End Milling Ti-6Al-4V Titanium Alloy: Experimental Validations on Chip Flow and Tool Wear,” Journal of Materials Processing Technology 221:128-145, 2015, doi:10.1016/j.jmatprotec.2015.02.019.
  11. Ducobu, F., Rivière-Lorphèvre, E., and Filippi, E., “Application of the Coupled Eulerian-Lagrangian (CEL) Method to the Modeling of Orthogonal Cutting,” European Journal of Mechanics 59:58-66, 2016, doi:10.1016/j.euromechsol.2016.03.008.
  12. Man, X., Ren, D., Usui, S., Johnson, C. et al., “Validation of Finite Element Cutting Force Prediction for End Milling,” Ann. CIRP 1:663-668, 2012, doi:10.1016/j.procir.2012.05.019.
  13. Wright, P., Horne, J., and Tabor, D., “Boundary Conditions at the Chip-Tool Interface in Machining: Comparisons between Seizure and Sliding Friction,” Wear 54(2):371-390, 1979, doi:10.1016/0043-1648(79)90128-5.
  14. Raman, S., Longstreet, A., and Guha, D., “A Fractal View of Tool-Chip Interfacial Friction in Machining,” Wear 253(11-12):1111-1120, 2002, doi:10.1016/S0043-1648(02)00238-7.
  15. Oezel, T., “The Influence of Friction Models on Finite Element Simulations of Machining,” International Journal of Machine Tools and Manufacture 46(1):518-530, 2006, doi:10.1016/j.ijmachtools.2005.07.001.
  16. Boyd, J., “Tribometer-Based Quantification of Friction in Metal Cutting,” M.A.Sc. thesis dissertation, McMaster University, Hamilton, 2012.
  17. Hendrik, P., Klocke, F., and Lung, D., “A New Experimental Methodology to Analyse the Friction Behaviour at the Tool-Chip Interface in Metal Cutting,” Production Engineering 6(4-5):349-354, 2012, doi:10.1007/s11740-012-0386-6.
  18. Stephenson, D. and Bandyopadhyay, P., “Process-Independent Force Characterization for Metal-Cutting Simulation,” Journal of Engineering Materials and Technology 119(1):86-94, 1997, doi:10.1115/1.2805980.
  19. Sneed, W., “Chip Removal Simulation to Predict Part Error and Vibration,” Proceedings of the AME Computers in Engineering Conference, New York, NY, vol. 2, 447-455, 1987.
  20. Subramani, G., Kapoor, S., and DeVor, R., “A Model for the Prediction of Bore Cylindricity during Machining,” ASME Journal Engineering for Industry 115:15-22, 1993, doi:10.1115/1.2901630.
  21. Lei, X., Song, H., Xue, Y., Li, J. et al., “Method for Cylindricity Error Evaluation Using Geometry Optimization Searching Algorithm,” Measurement 44(9):1556-1563, 2011, doi:10.1016/j.measurement.2011.06.010.

Cited By