This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Pre-spark Heat Release of Ethanol-Blended Gasoline Surrogate Fuels on Engine Combustion Behavior

Journal Article
04-17-01-0003
ISSN: 1946-3952, e-ISSN: 1946-3960
Published May 02, 2023 by SAE International in United States
Effects of Pre-spark Heat Release of Ethanol-Blended Gasoline
                    Surrogate Fuels on Engine Combustion Behavior
Sector:
Citation: Yoshimura, K., Isobe, K., Kawashima, M., Yamaguchi, K. et al., "Effects of Pre-spark Heat Release of Ethanol-Blended Gasoline Surrogate Fuels on Engine Combustion Behavior," SAE Int. J. Fuels Lubr. 17(1):2024, https://doi.org/10.4271/04-17-01-0003.
Language: English

References

  1. European Council 2022 2023 https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
  2. European Commission 2021 2023 https://climate.ec.europa.eu/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/co2-emission-performance-standards-cars-and-vans_en
  3. Ministry of Economy 2018 2023 https://warp.da.ndl.go.jp/info:ndljp/pid/11157160/www.meti.go.jp/press/2018/08/20180831007/20180831007.html
  4. Shafiei , E. et al. Optimal Electrification Level of Passenger Cars in Europe in a Battery-Constrained Future Transportation Research Part D 102 2022 103132
  5. Terazawa , Y. et al. Development of SKYACTIV Engines from a Perspective of Environmental Improvement Journal of the Combustion Society of Japan 60 191 2018 10 17
  6. Leppard , W.R. The Chemical Origin of Fuel Octane Sensitivity SAE Technical Paper 902137 1990 https://doi.org/10.4271/902137
  7. Westbrook , C.K. Chemical Kinetics of Octane Sensitivity in a Spark-Ignition Engine Combustion and Flame 175 2017 2 15
  8. DelVescovo , D.A. et al. Modeling Pre-spark Heat Release and Low Temperature Chemistry of Iso-octane in a Boosted Spark-Ignition Engine Combustion and Flame 212 2020 39 52
  9. Splitter , D. et al. Engine Operating Conditions and Fuel Properties on Pre-Spark Heat Release and SPI Promotion in SI Engines SAE Int. J. Engines 10 3 2017 1036 1050 https://doi.org/10.4271/2017-01-0688
  10. Splitter , D. et al. Effects of Pre-spark Heat Release on Engine Knock Limit Proc. Combust. Inst. 37 2019 4893 4900
  11. Szybist , J.P. et al. Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines Combustion and Flame 177 2017 49 66
  12. Yamakawa , M. et al. Combustion Technology Development for a High Compression Ratio Gasoline Engine Trans. of Society of Automotive Engineers of Japan 43 1 2012 81 87
  13. Yamakawa , M. et al. Combustion Technology Development for a High Compression Ratio SI Engine SAE Int. J. Fuels Lubr. 5 1 2012 98 105 https://doi.org/10.4271/2011-01-1871
  14. Robak , K. et al. Review of Second Generation Bioethanol Production from Residual Biomass Food Technology and Biotechnology 56 2 2018 174 187
  15. Renewable Fuels Association 2022 https://ethanolrfa.org/media-and-news/category/blog/article/2022/10/the-truth-about-ethanol-and-carbon-emissions
  16. US Department of Energy 2023 https://www.energy.gov/eere/bioenergy/co-optimization-fuels-engines
  17. US Department of Energy 2019 2023 https://www.osti.gov/servlets/purl/1567705
  18. Yoshimura K. , et al. Effects of Partial Oxidation and Octane Sensitivity on Flame Stretch Rate at Extinction under EGR Conditions COMODIA 2022 2022
  19. Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  20. LLC Gamma Technologies 2020
  21. Nakata , K. et al. Toyota’s New Combustion Technology for High Engine Thermal Efficiency and High Engine Output Performance 37th International Wiener Motor Symposium 2016 2016
  22. Yoshimura , K. et al. Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions SAE Technical Paper 2021-01-1165 2021 https://doi.org/10.4271/2021-01-1165
  23. Farrell , J. , Johnston , R. , and Androulakis , I. Molecular Structure Effects on Laminar Burning Velocities at Elevated Temperature and Pressure SAE Technical Paper 2004-01-2936 2004 https://doi.org/10.4271/2004-01-2936
  24. Ansys, Inc. 2022
  25. DIPPR Diadem 2006
  26. Poling , B.E. et al. The Properties of Gases and Liquids 5th New York McGraw-Hill 2000
  27. Ansys, Inc. 2023 https://www.ansys.com/products/fluids/ansys-chemkin-pro
  28. Sakai , Y. et al. Development of Reduced Chemical Kinetics Mechanism of Gasoline Surrogate Fuel 28th Internal Combustion Engine Symposium 2017
  29. Sakai , Y. et al. Development of Reduced Chemical Kinetics Mechanism of Gasoline Surrogate Fuel with Oxygenated Compounds 29th Internal Combustion Engine Symposium 2018
  30. Damkohler , G. Der Einfluß der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen Zeitschrift für Elektrochemie und angewandte physikalische Chemie 46 1940 601 652
  31. Sakai , Y. et al. Interpretation of Structure Dependence in Octane Number from Low Temperature Oxidation Mechanism Journal of the Combustion Society of Japan 54 170 2012 221 229
  32. Ansys, Inc. 2022
  33. Ando , H. et al. The Thermal Ignition of Hydrocarbon-Fuel is not Controlled by H 2 -O 2 System Chemistry Transactions of Society of Automotive Engineers of Japan 40 2009 1557 1562
  34. Ando , H. , Sakai , Y. , and Kuwahara , K. Universal Rule of Hydrocarbon Oxidation SAE Technical Paper 2009-01-0948 2009 https://doi.org/10.4271/2009-01-0948
  35. Weskbrook , C.K. et al. Chemical Kinetic Modeling of Hydrocarbon Combustion Prog. Energy Combust. Sci. 10 1984 1 57

Cited By