This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Detailed Compositional Comparison of Hydrogenated Vegetable Oil with Several Diesel Fuels and Their Effects on Engine-Out Emissions

Journal Article
04-16-03-0015
ISSN: 1946-3952, e-ISSN: 1946-3960
Published December 08, 2022 by SAE International in United States
Detailed Compositional Comparison of Hydrogenated Vegetable Oil with
                    Several Diesel Fuels and Their Effects on Engine-Out Emissions
Sector:
Citation: Bays, J., Gieleciak, R., Viola, M., Lewis, R. et al., "Detailed Compositional Comparison of Hydrogenated Vegetable Oil with Several Diesel Fuels and Their Effects on Engine-Out Emissions," SAE Int. J. Fuels Lubr. 16(3):193-220, 2023, https://doi.org/10.4271/04-16-03-0015.
Language: English

References

  1. Kauppila , I. HVO Making it Big 2018 2022 https://www.ofimagazine.com/content-images/news/HVO2.pdf
  2. Hartikka , T. , Kuronen , M. , and Kiiski , U. Technical Performance of HVO (Hydrotreated Vegetable Oil) in Diesel Engines SAE Technical Paper 2012-01-1585 2012 https://doi.org/10.4271/2012-01-1585
  3. Karavalakis , G. , Johnson , K. , Durbin , T.D. , and McCaffery , C. 2019 http://crcao.org/wp-content/uploads/2019/08/CRC-Final-Report-E-117_Revised_July-2019.pdf
  4. McCaffery , C. , Karavalakis , G. , Durbin , T. , Jung , H. et al. Engine-Out Emissions Characteristics of a Light Duty Vehicle Operating on a Hydrogenated Vegetable Oil Renewable Diesel SAE Technical Paper 2020-01-0337 2020 https://doi.org/10.4271/2020-01-0337
  5. Bohl , T. , Smallbone , A. , Tian , G. , and Roskilly , A.P. Particulate Number and NOx Trade-Off Comparisons between HVO and Mineral Diesel in HD Applications Fuel 215 2018 90 101 https://doi.org/10.1016/j.fuel.2017.11.023
  6. Kuronen , M. , Mikkonen , S. , Aakko , P. , and Murtonen , T. Hydrotreated Vegetable Oil as Fuel for Heavy Duty Diesel Engines SAE Technical Paper 2007-01-4031 2007 https://doi.org/10.4271/2007-01-4031
  7. Dryer , F.L. Chemical Kinetic and Combustion Characteristics of Transportation Fuels Proc. Comb. Ins. 35 2015 117 144 https://doi.org/10.1016/j.proci.2014.09.008
  8. Erkkilä , K. , Nylund , N. , Hulkkonen , T. , Tilli , A. et al. Emission Performance of Paraffinic HVO Diesel Fuel in Heavy Duty Vehicles SAE Technical Paper 2011-01-1966 2011 https://doi.org/10.4271/2011-01-1966
  9. Dimitriadis , A. , Seljak , T. , Vihar , R. , Žvar Baškovič , U. et al. Improving PM-NOx Trade-Off with Paraffinic Fuels: A Study towards Diesel Engine Optimization with HVO Fuel 265 2020 116921 https://doi.org/10.1016/j.fuel.2019.116921
  10. Marasri , S. , Ewphun , P.P. , Srichai , P. , Charoenphonphanich , C. et al. Combustion Characteristics of Hydrotreated Vegetable Oil-Diesel Blends under EGR and Low Temperature Combustion Conditions Int. J. Automot. Technol. 20 2019 569 578 https://doi.org/10.1007/s12239-019-0054-3
  11. Napolitano , P. , Guido , C. , Beatrice , C. , and Pellegrini , L. Impact of Hydrocracked Diesel Fuel and Hydrotreated Vegetable Oil Blends on the Fuel Consumption of Automotive Diesel Engines Fuel 222 2018 718 732 https://doi.org/10.1016/j.fuel.2018.02.097
  12. Shukla , P.C. , Shamun , S. , Gren , L. , Malmborg , V. et al. Investigation of Particle Number Emission Characteristics in a Heavy-Duty Compression Ignition Engine Fueled with Hydrotreated Vegetable Oil (HVO) SAE Int. J. Fuels Lubr. 11 4 2018 495 505 https://doi.org/10.4271/2018-01-0909
  13. Omari , A. , Pischinger , S. , Bhardwaj , O. , Holderbaum , B. et al. Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications SAE Int. J. Fuels Lubr. 10 3 2017 756 767 https://doi.org/10.4271/2017-01-2295
  14. Hunicz , J. , Matijošius , J. , Rimkus , A. , Kilikevičius , A. et al. Efficient Hydrotreated Vegetable Oil Combustion under Partially Premixed Conditions with Heavy Exhaust Gas Recirculation Fuel 268 2020 117350 https://doi.org/10.1016/j.fuel.2020.117350
  15. Atzemi , M. , Lois , E. , and Kosyfologou , I. Effects of Biodiesel and Hydrotreated Vegetable Oil on the Performance and Exhaust Emissions of a Stationary Diesel Engine IOSR Journal of Applied Chemistry 12 2019 44 54 https://doi.org/10.9790/5736-1201014454
  16. Walsh , M.P. Global Trends in Diesel Emissions Regulation - A 2001 Update SAE Technical Paper 2001-01-0183 2001 https://doi.org/10.4271/2001-01-0183
  17. Sydbom , A. , Blomberg , A. , Parnia , S. , Stenfors , N. et al. Health Effects of Diesel Exhaust Emissions Eur. Respir. J. 17 2001 733 746 https://doi.org/10.1183/09031936.01.17407330
  18. Ristovski , Z.D. , Miljevic , B. , Surawski , N.C. , Morawska , L. et al. Respiratory Health Effects of Diesel Particulate Matter Respirology 17 2012 201 212 https://doi.org/10.1111/j.1440-1843.2011.02109.x
  19. Unglert , M. , Bockey , D. , Bofinger , C. , Buchholz , B. et al. Action Areas and the Need for Research in Biofuels Fuel 268 2020 117227 https://doi.org/10.1016/j.fuel.2020.117227
  20. Gieleciak , R. AVFL-34: Advanced Characterization of E-117 Diesel Fuels
  21. U.S. Department of Energy 2022 https://afdc.energy.gov/laws/395
  22. Mueller , C.J. , Cannella , W.J. , Bays , J.T. , Bruno , T.J. et al. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties Energy Fuels 30 2016 1445 1461 https://doi.org/10.1021/acs.energyfuels.5b02879
  23. Cannella , W. , Fairbridge , C. , Gieleciak , R. , Arboleda , P. et al. 2013 http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-Project-AVFL-19-2-Final-Report.pdf
  24. ASTM D2887-19ae2 2019
  25. ASTM D5773-21 2021
  26. ASTM D5949-16 2016
  27. Jones , M.C. , Campbell , K.B. , Coffey , M.J. , Marina , O.A. et al. High-Pressure Apparatus for Monitoring Solid–Liquid Phase Transitions Rev. Sci. Instrum. 91 2020 094102 https://doi.org/10.1063/5.0015518
  28. Ramos , L. Comprehensive Two-Dimensional Gas Chromatography 1st 55 Amsterdam Elsevier Science 2009 9780444532374
  29. Vendeuvre , C. , Ruiz-Guerrero , R. , Bertoncini , F. , Duval , L. et al. Characterisation of Middle-Distillates by Comprehensive Two-Dimensional Gas Chromatography (GC×GC): A Powerful Alternative for Performing Various Standard Analysis of middle-distillates J. Chromatogr. A 1086 2005 21 28 https://doi.org/10.1016/j.chroma.2005.05.106
  30. Adahchour , M. , Beens , J. , Vreuls , R.J.J. , Batenburg , A.M. et al. Comprehensive Two-Dimensional Gas Chromatography of Complex Samples by Using a ‘Reversed-Type’ Column Combination: Application to Food Analysis J. Chromatogr. A. 1054 2004 47 55 https://doi.org/10.1016/j.chroma.2004.07.084
  31. Tran , T.C. , Logan , G.A. , Grosjean , E. , Harynuk , J. et al. Comparison of Column Phase Configurations for Comprehensive Two Dimensional Gas Chromatographic Analysis of Crude Oil and Bitumen Org. Geochem. 37 2006 1190 1194 https://doi.org/10.1016/j.orggeochem.2006.05.006
  32. Gieleciak , R. , Oro , N. 2013
  33. ASTM D8267-19a 2019
  34. Hodgson , A. 2020
  35. Nakajima , T. , Kitano , K. , and Mogi , K. Effects of Next-Generation Bio Diesel Fuel on the Engine Performance SAE Technical Paper 2015-01-1928 2015 https://doi.org/10.4271/2015-01-1928
  36. Xiangchen , H. , Huq , N.A. , Stunkel , J. , Cleveland , N.S. et al. Tailoring Diesel Bioblendstock from Integrated Catalytic Upgrading of Carboxylic Acids: A ‘Fuel Property First’ Approach Green Chemistry 21 2009 5813 5827 https://doi.org/10.1039/C9GC01820D
  37. Altgelt , K.H. and Boduszynski , M.M. Composition and Analysis of Heavy Petroleum Fractions 1st Boca Raton, FL CRC Press 1993 495 496 https://doi.org/10.1201/b16931
  38. Abu-Dagga , F. and Rüegger , H. Evaluation of Low Boiling Crude-Oil Fractions by NMR-Spectroscopy—Average Structural Parameters and Identification of Aromatic Components by 2D NMR-Spectroscopy Fuel 67 1988 1255 1262 https://doi.org/10.1016/0016-2361(88)90048-8
  39. Sarpal , A.S. , Kapur , G.S. , Mukherjee , S. , and Jain , S.K. Characterization by C-13 NMR Spectroscopy of Base Oils Produced by Different Processes Fuel 76 1997 931 937 https://doi.org/10.1016/S0016-2361(97)00085-9
  40. Spectral Database for Organic Compounds SDBS National Institute of Advanced Industrial Science and Technology 2022 https://sdbs.db.aist.go.jp
  41. Murtonen , T. , Aakko-Saksa , P. , Kuronen , M. , Mikkonen , S. et al. Emissions with Heavy-Duty Diesel Engines and Vehicles Using FAME, HVO and GTL Fuels with and without DOC+POC Aftertreatment SAE Int. J. Fuels Lubr. 2 2 2010 147 166 https://doi.org/10.4271/2009-01-2693
  42. Lapuerta , M. , Villajos , M. , Agudelo , J.R. , and Boehman , A.L. Key Properties and Blending Strategies of Hydrotreated Vegetable Oil as Biofuel for Diesel Engines Fuel Process. Technol. 92 2011 2406 2411 https://doi.org/10.1016/j.fuproc.2011.09.003
  43. Yanowitz , J. , Ratcliff , M.A. , McCormick , R.L. , Taylor , J.D. et al. 2017
  44. Chandler , J. , Daniels , D. , Frank , T. , Gault , R. et al. 2016 http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-671.pdf
  45. Murata , K. , Saito , K. , Tanaka , S. , and Takizawa , H. The Possibilities of Wax Precipitation from Diesel Fuels at High Pressure and Its Influence on Diesel Engine Performance SAE Technical Paper 2010-01-1127 2010 https://doi.org/10.4271/2010-01-1127
  46. Pflaum , H. , Hofmann , P. , Geringer , B. , and Weissel , W. Potential of Hydrogenated Vegetable Oil (HVO) in a Modern Diesel Engine SAE Technical Paper 2010-32-0081 2010 https://doi.org/10.4271/2010-32-0081
  47. Azetsu , A. , Sato , Y. , and Wakisaka , Y. Effects of Aromatic Components in Fuel on Flame Temperature and Soot Formation in Intermittent Spray Combustion SAE Technical Paper 2003-01-1913 2003 https://doi.org/10.4271/2003-01-1913
  48. Olson , D.B. , Pickens , J.C. , and Gill , R.J. The Effects of Molecular Structure on Soot Formation II. Diffusion Flames Combust. Flame 62 1985 43 60 https://doi.org/10.1016/0010-2180(85)90092-6
  49. Siebers , D. and Higgins , B. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions SAE Technical Paper 2001-01-0530 2001 https://doi.org/10.4271/2001-01-0530
  50. Pickett , L. and Siebers , D. Fuel Effects on Soot Processes of Fuel Jets at DI Diesel Conditions SAE Technical Paper 2003-01-3080 2003 https://doi.org/10.4271/2003-01-3080
  51. Glassman , I. Soot Formation in Combustion Processes Symposium (International) on Combustion 22 1989 295 311 https://doi.org/10.1016/S0082-0784(89)80036-0
  52. Coutinho , J.A.P. , Mirante , F. , Ribeiro , J.C. , Sansot , J.M. et al. Cloud and Pour Points in Fuel Blends Fuel 81 2002 963 967 https://doi.org/10.1016/S0016-2361(01)00213-7
  53. Duong , L.H. , Fujita , O. , Reksowardojo , I.K. , Soerawidjaja , T.H. et al. Experimental Investigation of the Effects of Cycloparaffins and Aromatics on the Sooting Tendency and the Freezing Point of Soap-Derived Biokerosene and Normal Paraffins Fuel 185 2016 855 862 https://doi.org/10.1016/j.fuel.2016.08.050
  54. Gottlieb , H.E. , Kotlyar , V. , and Nudelman , A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities J. Org. Chem. 62 1997 7512 7515 https://doi.org/10.1021/jo971176v
  55. Wang , F.C.-Y. , Qian , K. GC×MS of Diesel: A Two-Dimensional Separation Approach Anal. Chem. 2005 77 2777 2785 https://doi.org/10.1021/ac0401624

Cited By