This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution

Journal Article
04-15-02-0009
ISSN: 1946-3952, e-ISSN: 1946-3960
Published January 13, 2022 by SAE International in United States
A Comparative Study of Directly Injected, Spark Ignition Engine
                    Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge
                    Dilution
Sector:
Citation: Kar, T., Zhou, Z., Brear, M., Yang, Y. et al., "A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution," SAE Int. J. Fuels Lubr. 15(2):199-220, 2022, https://doi.org/10.4271/04-15-02-0009.
Language: English

References

  1. Bae , C. and Kim , J. Alternative Fuels for Internal Combustion Engines Proceedings of the Combustion Institute 36 3 2017 3389 3413
  2. Pourkhesalian , A.M. , Shamekhi , A.H. , and Salimi , F. Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics Fuel 89 5 2010 1056 1063
  3. Harry , L. Direct Injection of CNG for Driving Performance with Low CO 2 23rd Aachen Colloquium Automobile and Engine Technology Aachen, Germany 2014
  4. Rengarajan , S. , Liu , Z. , Lerin , C. , Stetter , J. et al. LPG Direct Injection Engine for Medium Duty Trucks SAE Technical Paper 2020-01-5008 2020 https://doi.org/10.4271/2020-01-5008
  5. Wimmer , A.W.T. , Ringler , J. , and Gerbig , F. H 2 -Direct Injection—A Highly Promising Combustion Concept SAE Technical Paper 2005-01-0108 2005 https://doi.org/10.4271/2005-01-0108
  6. Zhen , X. and Wang , Y. An Overview of Methanol as an Internal Combustion Engine Fuel Renewable and Sustainable Energy Reviews 52 2015 477 493
  7. Gong , C. , Li , Z. , Yi , L. , and Liu , F. Comparative Study on Combustion and Emissions between Methanol Port-Injection Engine and Methanol Direct-Injection Engine with H 2 -Enriched Port-Injection under Lean-Burn Conditions Energy Conversion and Management 200 2019 112096
  8. Poulton , M.L. Alternative Fuels for Road Vehicles Billerica, MA Computational Mechanics, Inc. 1994
  9. NGV Global 2016 http://www.iangv.org/current-ngv-stats/
  10. Kramer , U. , Klein , R. , Hofmann , C. , and Weber , C. Extreme Downsizing of CNG Engines-Opportunities and Challenges Proceedings of the 1st International Conference “Advanced Fuels for Sustainable Mobility” Nuerburgring, Germany 2014
  11. Kar , T. , Zhou , Z. , Brear , M. , Yang , Y. et al. A Comparative Study of Directly Injected, Spark Ignition Engine Performance and Emissions with Natural Gas, Gasoline and Charge Dilution Fuel 304 2021 121438
  12. Ferrera , M. Highly Efficient Natural Gas Engines SAE Technical Paper 2017-24-0059 2017 https://doi.org/10.4271/2017-24-0059
  13. Borges , L.H. , Hollnagel , C. , and Muraro , W. Development of a Mercedes-Benz Natural Gas Engine M 366 LAG, with a Lean Burn Combustion System SAE Technical Paper 962378 1996 https://doi.org/10.4271/962378
  14. Atibeh , P. 2012
  15. Einewall , P. , Tunestål , P. , and Johansson , B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst SAE Technical Paper 2005-01-0250 2005 https://doi.org/10.4271/2005-01-0250
  16. Rouleau , L. , Serrano , D. , Lecointe , B. , Ravet , F. et al. CNG Direct Injection Spark-Ignition Engine with High Turbulence and High Compression Ratio: Numerical and Experimental Investigations 12th Conference of Gaseous-Fuel Powered Vehicles Stuttgart, Germany 2017
  17. Sevik , J. , Pamminger , M. , Wallner , T. , Scarcelli , R. et al. Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection Compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine SAE Int. J. Engines 9 2 2016 1130 1142 https://doi.org/10.4271/2016-01-0806
  18. Orbaiz , P. and Brear , M. Energy Balance of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas SAE Technical Paper 2014-01-1337 2014 https://doi.org/10.4271/2014-01-1337
  19. Gillespie , L. , Lawes , M. , Sheppard , C.G.W. , and Woolley , R. Aspects of Laminar and Turbulent Burning Velocity Relevant to SI Engines SAE Technical Paper 2000-01-0192 2000 https://doi.org/10.4271/2000-01-0192
  20. Bradley , D. and Lung , F.K.K. Spark Ignition and the Early Stages of Turbulent Flame Propagation Combustion and Flame 69 1 1987 71 93
  21. Heywood , J. Internal Combustion Engine Fundamentals New York McGraw-Hill, Inc. 1988
  22. Hassaneen , A.E. , Varde , K.S. , Bawady , A.H. , and Morgan , A.-A. A Study of the Flame Development and Rapid Burn Durations in a Lean-Burn Fuel Injected Natural Gas S.I. Engine SAE Technical Paper 981384 1998 https://doi.org/10.4271/981384
  23. Rhodes , D.B. and Keck , J.C. Laminar Burning Speed Measurements of Indolene-Air-Diluent Mixtures at High Pressures and Temperatures SAE Technical Paper 850047 1985 https://doi.org/10.4271/850047
  24. Zeng , K. , Huang , Z. , Liu , B. , Liu , L. et al. Combustion Characteristics of a Direct-Injection Natural Gas Engine under Various Fuel Injection Timings Applied Thermal Engineering 26 8-9 2006 806 813
  25. Jones , A.L. and Evans , R.L. Comparison of Burning Rates in a Natural-Gas-Fueled Spark Ignition Engine Journal of Engineering for Gas Turbines and Power 107 4 1985 908 913
  26. Jääskeläinen , H.E. and Wallace , J.S. Performance and Emissions of a Natural Gas-Fueled 16 Valve DOHC Four-Cylinder Engine SAE Technical Paper 930380 1993 https://doi.org/10.4271/930380
  27. Neame , G.R. , Gardiner , D.P. , Mallory , R.W. , Rao , V.K. et al. Improving the Fuel Economy of Stoichiometrically Fuelled SI Engines by Means of EGR and Enhanced Ignition—A Comparison of Gasoline, Methanol and Natural Gas SAE Technical Paper 952376 1995 https://doi.org/10.4271/952376
  28. Lancaster , D.R. , Krieger , R.B. , Sorenson , S.C. , and Hull , W.L. Effects of Turbulence on Spark-Ignition Engine Combustion SAE Technical Paper 760160 1976 https://doi.org/10.4271/760160
  29. Soltic , P. , Hilfiker , T. , Hänggi , S. , Hutter , R. et al. 2017
  30. Srivastava , D.K. and Agarwal , A.K. Combustion Characteristics of a Variable Compression Ratio Laser-Plasma Ignited Compressed Natural Gas Engine Fuel 214 2018 322 329
  31. Li , G. , Long , Y. , Zhang , Z. , Liang , J. et al. Performance and Emissions Characteristics of a Lean-Burn Marine Natural Gas Engine with the Addition of Hydrogen-Rich Reformate International Journal of Hydrogen Energy 44 59 2019 31544 31556
  32. Peters , N. Laminar Flamelet Concepts in Turbulent Combustion Symposium (International) on Combustion 21 1988 1231 1250
  33. Borghi , R. On the Structure and Morphology of Turbulent Premixed Flames Recent Advances in the Aerospace Sciences Boston, MA Springer 1985 117 38
  34. Ballal , D.R. and Lefebvre , A.H. The Structure and Propagation of Turbulent Flames Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 344 1637 1975 217 234
  35. Abraham , J. , Williams , F.A. , and Bracco , F.V. A Discussion of Turbulent Flame Structure in Premixed Charges SAE Technical Paper 850345 1985 https://doi.org/10.4271/850345
  36. Libby , P.A. and Williams , F.A. Structure of Laminar Flamelets in Premixed Turbulent Flames Combustion and Flame 44 1-3 1982 287 303
  37. Bradley , D. , Lau , A.K.C. , Lawes , M. , and Smith , F.T. Flame Stretch Rate as a Determinant of Turbulent Burning Velocity Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences 338 1650 1992 359 387
  38. Abdel-Gayed , R.G. , Bradley , D. , and Lung , F.K.K. Combustion Regimes and the Straining of Turbulent Premixed Flames Combustion and Flame 76 2 1989 213 218
  39. Abdel-Gayed , R.G. , Al-Khishali , K.J. , and Bradley , D. Turbulent Burning Velocities and Flame Straining in Explosions Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 1984 391 1801 393 414
  40. Merdjani , S. and Sheppard , C.G.W. Gasoline Engine Cycle Simulation Using the Leeds Turbulent Burning Velocity Correlations SAE Technical Paper 932640 1993 https://doi.org/10.4271/932640
  41. Abbasi Atibeh , P. , Brear , M.J. , Dennis , P.A. , Orbaiz , P.J. et al. Lean Limit Combustion Analysis for a Spark Ignition Natural Gas Internal Combustion Engine Combustion Science and Technology 185 8 2013 1151 1168
  42. Orbaiz , P. 2012
  43. Gamma Technologies GT-Suite Engine Performance Application Manual Westmont, IL Gamma Technologies 2018
  44. Zhou , Z. 2020
  45. Zhou , Z. , Kar , T. , Yang , Y. , Brear , M. et al. Mapping K Factor Variations and Its Causes in a Modern, Spark-Ignition Engine Fuel 290 2021 120012
  46. Foong , T. 2013
  47. Dennis , P. 2015
  48. Manofsky , L. , Vavra , J. , Assanis , D.N. , and Babajimopoulos , A. Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition SAE Technical Paper 2011-01-1179 2011 https://doi.org/10.4271/2011-01-1179
  49. Rassweiler , G.M. and Withrow , L. Motion Pictures of Engine Flames Correlated with Pressure Cards SAE Technical Paper 380139 1938 https://doi.org/10.4271/380139
  50. Blizard , N.C. and Keck , J.C. Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines SAE Technical Paper 740191 1974 https://doi.org/10.4271/740191
  51. Tabaczynski , R.J. , Ferguson , C.R. , and Radhakrishnan , K. A Turbulent Entrainment Model for Spark-Ignition Engine Combustion SAE Technical Paper 770647 1977 https://doi.org/10.4271/770647
  52. Tabaczynski , R.J. , Trinker , F.H. , and Shannon , B.A.S. Further Refinement and Validation of a Turbulent Flame Propagation Model for Spark-Ignition Engines Combustion and Flame 39 2 1980 111 121
  53. Milton , B.E. and Keck , J.C. Laminar Burning Velocities in Stoichiometric Hydrogen and Hydrogen-Hydrocarbon Gas Mixtures Combustion and Flame 58 1 1984 13 22
  54. Amirante , R. , Distaso , E. , Tamburrano , P. , and Reitz , R.D. Laminar Flame Speed Correlations for Methane, Ethane, Propane and Their Mixtures, and Natural Gas and Gasoline for Spark-Ignition Engine Simulations International Journal of Engine Research 18 9 2017 951 970
  55. Morel , T. and Keribar , R. A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers SAE Technical Paper 850204 1985 https://doi.org/10.4271/850204
  56. Fogla , N. , Bybee , M. , Mirzaeian , M. , Millo , F. et al. Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence SAE Int. J. Engines 10 2 2017 562 575 https://doi.org/10.4271/2017-01-0542
  57. Gamma Technologies GT-SUITE Optimization Manual Westmont, IL Gamma Technologies 2018
  58. Orbaiz , P. , Brear , M.J. , Abbasi , P. , and Dennis , P.A. A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas SAE Int. J. Engines 6 1 2013 23 44 https://doi.org/10.4271/2013-01-0229
  59. Mirzaeian , M. , Millo , F. , and Rolando , L. Assessment of the Predictive Capabilities of a Combustion Model for a Modern Downsized Turbocharged SI Engine SAE Technical Paper 2016-01-0557 2016 https://doi.org/10.4271/2016-01-0557
  60. Atibeh , P.A. , Dennis , P.A. , Orbaiz , P.J. , Brear , M.J. et al. Lean Burn Performance of a Natural Gas Fuelled, Port Injected, Spark Ignition Engine SAE Technical Paper 2012-01-0822 2012 https://doi.org/10.4271/2012-01-0822
  61. Thurnheer , T. , Soltic , P. , and Eggenschwiler , P.D. SI Engine Fuelled with Gasoline, Methane and Methane/Hydrogen Blends: Heat Release and Loss Analysis International Journal of Hydrogen Energy 34 5 2009 2494 2503
  62. Raine , R.R. , Zhang , G. , and Pflug , A. Comparison of Emissions from Natural Gas and Gasoline Fuelled Engines—Total Hydrocarbon and Methane Emissions and Exhaust Gas Recirculation Effects SAE Technical Paper 970743 1997 https://doi.org/10.4271/970743
  63. Wei , H. , Zhu , T. , Shu , G. , Tan , L. et al. Gasoline Engine Exhaust Gas Recirculation—A Review Applied Energy 99 2012 534 544
  64. Global Warming Potentials 2019
  65. Andrews , G.E. and Bradley , D. The Burning Velocity of Methane-Air Mixtures Combustion and Flame 19 2 1972 275 288
  66. Abdel-Gayed , R.G. , Bradley , D. , and Lawes , M. Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 1987 414 1847 389 413
  67. Kar , T. 2020

Cited By